DEVD-Sequenz

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Mit DEVD wird im Einbuchstabencode die Aminosäuresequenz aus Asparaginsäure-Glutaminsäure-Valin-Asparaginsäure (Asp-Glu-Val-Asp) bezeichnet.

Die DEVD-Sequenz stimmt mit einer Sequenz innerhalb der Poly-ADP-Ribose-Polymerase 1 (PARP-1), einem DNA-Reparatur-Enzym überein. Die Spaltung der DEVD-Sequenz wird durch Caspase-3 während des programmierten Zelltods (Apoptose) katalysiert. In der Biochemie gibt es eine Reihe von verschiedenen Anwendungen der DEVD-Sequenz.

Verschiedene DEVD-Derivate, wie DEVD-AMC oder DEVD-AFC, werden als fluorimetrisches Assays für die Ermittlung der Enzymaktivität der Caspasen verwendet. Dabei wird ein an DEVD gebundener Fluoreszenzfarbstoff, beispielsweise 7-Amino-4-methylcumarin (AMC), durch die Aktivität der Caspase-3, -6 oder -7 freigesetzt und fluoreszenzspektrometrisch gemessen. Die Intensität des fluoreszierenden Lichtes korreliert direkt mit der Aktivität Caspasen.[1][2]

Mit DEVD-CHO (Asp-Glu-Val-Asp-Aldehyd) und DEVD-fmk (Asp-Glu-Val-Asp-O-Methyl-fluormethylketon) wurden zwei Caspase-Inhibitoren entwickelt. Die N-Acetyl-Variante des DEVD-CHO (AcDEVD-CHO = N-Acetyl-Asp-Glu-Val-Asp-Aldehyd) reduziert die Neurotoxizität der Chemotherapeutika Cisplatin, Cyclophosphamid, Methotrexat, Vinblastin und Thiotepa.[3][4]

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Garcia-Calvo M et al., Purification and catalytic properties of human caspase family members. In: Cell Death & Differentiation, 6/1999, S. 362–9. PMID 10381624
  2. Dovi-Akué DAP, Volatile Anästhetika induzieren Caspase-abhängige Apoptose in Jurkat T-Lymphozyten (PDF; 1,9 MB), Dissertation, Albert-Ludwigs-Universität Freiburg i. Br., 2005
  3. Rzeski W et al., Excitotoxicity and apoptosis mediate neuronal toxicity of cytostatic agents, in Society for Neuroscience 27th Annual Meeting, Los Angeles 1998
  4. Rzeski W, Anticancer agents are potent neurotoxins in vitro and in vivo, in Ann Neurol, 56/2004, S. 351–60. PMID 15349862
  • Schmidt N, Evolution des programmierten Zelltods: Biochemische und immunhistochemische Untersuchungen an Caspasen in Hydra, Dissertation, LMU München, 2003 (PDF-Datei; 3,64 MB)
  • Fernandes-Alnemri T, Mch3, a novel human apoptotic cysteine protease highly related to CPP32. In: Cancer Research, 55/1995, S. 6045–52.
  • Fernandes-Alnemri T, In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. In: Proceedings of the National Academy of Sciences, 93/1996, S. 7464–9.
  • Garcia-Calvo M et al., Inhibition of human caspases by peptide-based and macromolecular inhibitors. In: Journal of Biological Chemistry, 273/1998, S. 32608–13.
  • Gurtu V, Fluorometric and colorimetric detection of caspase activity associated with apoptosis. In: Analytical Biochemistry, 251/1997, S. 98–102.
  • Kidd VJ, Proteolytic activities that mediate apoptosis. In: Annual Review of Physiology, 60/1998, S. 533–73.
  • Margolin N et al., Substrate and inhibitor specificity of interleukin-1 beta-converting enzyme and related caspases. In: Journal of Biological Chemistry, 272/1997, S. 7223–8.
  • Muzio M et al., FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death - inducing signaling complex. In: Cell, 85/1996, S. 817–27.
  • Nicholson DW et al., Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. In: Nature, 376/1995, S. 37–43.
  • Rotonda J et al., The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. In: Nature Structural Biology, 3/1996, S. 619–25.
  • Schotte P et al., Non-specific effects of methyl ketone peptide inhibitors of caspases. In: FEBS Letters, 442/1999, S. 117–121.
  • Talanian RV et al., Substrate specificities of caspase family proteases. In: Journal of Biological Chemistry, 272/1997, S. 9677–82.
  • Talanian RV, Allen HJ, Roles of caspases in inflammation and apoptosis: prospects as drug discovery targest. In: Annual Reports in Medicinal Chemistry, 33/1988, S. 273–82.
  • Thornberry NA et al., A combinatorial approach defines specificities of members of the caspase family and granzyme B. In: Journal of Biological Chemistry, 272/1997, S. 17907–11.
  • Villa P et al., Caspases and caspase inhibitors. In: Trends in Biochemical Sciences, 22/1997, S. 388–93.