Lithiumchlorid
Kristallstruktur | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
_ Li+ _ Cl− | ||||||||||
Kristallsystem |
kubisch | |||||||||
Raumgruppe |
Fm3m (Nr. 225) | |||||||||
Gitterparameter |
514 pm | |||||||||
Koordinationszahlen |
Li[6], Cl[6] | |||||||||
Allgemeines | ||||||||||
Name | Lithiumchlorid | |||||||||
Andere Namen | ||||||||||
Verhältnisformel | LiCl | |||||||||
Kurzbeschreibung |
weißer, hygroskopischer Feststoff[2] | |||||||||
Externe Identifikatoren/Datenbanken | ||||||||||
| ||||||||||
Eigenschaften | ||||||||||
Molare Masse | 42,39 g·mol−1 | |||||||||
Aggregatzustand |
fest | |||||||||
Dichte |
2,07 g·cm−3[3] | |||||||||
Schmelzpunkt | ||||||||||
Siedepunkt |
1360 °C[3] | |||||||||
Löslichkeit | ||||||||||
Brechungsindex |
1,662[6] | |||||||||
Sicherheitshinweise | ||||||||||
| ||||||||||
Toxikologische Daten | ||||||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa). Brechungsindex: Na-D-Linie, 20 °C |
Lithiumchlorid LiCl, das Lithiumsalz der Salzsäure, bildet farblose, stark hygroskopische[2], zerfließliche Kristalle. Neben dem wasserfreien Lithiumchlorid existieren noch verschiedene Hydrate, bekannt sind LiCl · n H2O mit n=1, 3 und 5.[7]
Eigenschaften
[Bearbeiten | Quelltext bearbeiten]Lithiumchloridlösungen sind stark hygroskopisch. Aus konzentrierten wässrigen Lösungen kristallisiert wasserfreies Lithiumchlorid erst bei Temperaturen oberhalb von 98 °C aus. Bei niedrigeren Temperaturen erhält man eine der Hydratformen. Die Löslichkeit in Wasser beträgt ca. 450 g LiCl/kg Lösung. Gasförmiges Lithiumchlorid bildet planare Ringe aus mehreren Lithiumchloridmolekülen (Di-, Tri- und Oligomere).
Lithiumchloridlösungen sind sehr korrosiv. Zur Handhabung konzentrierter Lösungen sind geeignete Werkstoffe auszuwählen. Lithiumchloridlösungen schädigen auch Beton.
Die Standardbildungsenthalpie des kristallinen Lithiumchlorids beträgt ΔfH0298 = −408,27 kJ/mol.[8]
Herstellung
[Bearbeiten | Quelltext bearbeiten]Die Gewinnung von Lithiumchlorid erfolgt durch Umsetzung einer wässrigen Lithiumhydroxid- oder Lithiumcarbonatlösung mit Chlorwasserstoff und anschließender Aufkonzentrierung und Trocknung.
Technisch relevant ist zurzeit nur die Umsetzung von Lithiumcarbonat mit Salzsäure mit anschließender Einengung unter Kristallisation von Lithiumchlorid in Vakuumverdampfern.
Außerdem fällt Lithiumchlorid häufig bei metallorganischen Synthesen als Nebenprodukt an (Salzmetathese).
Da die Synthese aus wässrigen Medien bei Raumbedingungen immer eine kristallwasserhaltige Verbindung ergibt, wird das wasserfreie Salz über Umsetzung des Hydrates mit Thionylchlorid dargestellt[9]:
Verwendung
[Bearbeiten | Quelltext bearbeiten]Lithiumchlorid kann zur Herstellung von Lithium benutzt werden. Hierzu wird eine Mischung aus Lithiumchlorid und Kaliumchlorid in einer Schmelzflusselektrolyse eingesetzt.[10] Wegen der stark hygroskopischen Wirkung kann es als Trocknungsmittel und auch zur Raumentfeuchtung verwendet werden.[11][12] Des Weiteren kann es als Flussmittel in der Löt- und Schweißtechnik eingesetzt werden.[12] Auf Grund seiner Hygroskopie kann es in Taupunktsensoren oder -hygrometern verwendet werden. Die elektrische Leitfähigkeit des Salzes ist stark abhängig von der Wasserkonzentration, weshalb die Umgebungsfeuchte aus der Leitfähigkeit des Lithiumchlorids bestimmt werden kann.[11] In chemischen oder geologischen Untersuchungen kann Lithiumchlorid als Tracer eingesetzt werden.[13] Lithiumchlorid kann in Enteiserlösungen verwendet werden. Da diese jedoch korrosiv sind, sind sie beispielsweise zur Anwendung an Fluggeräten in den USA verboten.[14] Auch die Textilindustrie verwendet Lithiumchlorid.[15] In Kältebädern können Lithiumchloridlösungen mit 25–30 % LiCl zum Einsatz kommen. Solche Kältebäder können bis −70 °C flüssig bleiben.
Lithiumchlorid eignet sich auch als potentielle Basis eines neuen Behandlungsverfahrens gegen die Varroamilbe, einen gefährlichen Parasiten der Honigbiene.[16][17] Es wirkt jedoch tödlich auf offene Brut.[18]
Weblinks
[Bearbeiten | Quelltext bearbeiten]- B. Schwan / technology review: Sonnenwärme im Absorber
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ Eintrag zu LITHIUM CHLORIDE in der CosIng-Datenbank der EU-Kommission, abgerufen am 12. Dezember 2021.
- ↑ a b c d e f Eintrag zu Lithiumchlorid in der GESTIS-Stoffdatenbank des IFA, abgerufen am 2. Januar 2024. (JavaScript erforderlich)
- ↑ a b c d Datenblatt Lithiumchlorid (PDF) bei Carl Roth, abgerufen am 14. Dezember 2010.
- ↑ Dimethyl Sulfoxide (DMSO) Solubility Data. In: Gaylord Chemical Company, L.L.C.; Bulletin 102, Juni 2014, S. 15. (PDF)
- ↑ Datenblatt Lithiumchlorid-Lösung (in THF) bei Sigma-Aldrich, abgerufen am 20. Januar 2024 (PDF).
- ↑ David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 90. Auflage. (Internet-Version: 2010), CRC Press / Taylor and Francis, Boca Raton FL, Index of Refraction of Inorganic Crystals, S. 10-246.
- ↑ A. Hönnerscheid, J. Nuss, C. Mühle, M. Jansen: Die Kristallstrukturen der Monohydrate von Lithiumchlorid und Lithiumbromid, in: Zeitschrift für anorganische und allgemeine Chemie Bd. 629, 2003. S. 312–316.
- ↑ Oliver Herzberg: Untersuchung organischer Festkörperreaktionen am Beispiel von Substitutions- und Polykondensationsreaktionen. Dissertation, Universität Hamburg 2000. DNB 960245774/34.
- ↑ Alfred R. Pray: Anhydrous metal chlorides. In: Therald Moeller (Hrsg.): Inorganic Syntheses. Band 5. McGraw-Hill, Inc., 1957, S. 153–156 (englisch).
- ↑ Jander, Blasius, Strähle: Einführung in das anorganisch-chemische Praktikum. 14. Auflage. Hirzel, Stuttgart 1995, ISBN 978-3-7776-0672-9, S. 386–387.
- ↑ a b Skript Universität Duisburg-Essen (PDF; 268 kB)
- ↑ a b Daniel Klein (Universität Karlsruhe): Alkalimetalle - Von der Lagerstätte bis zur Verwendung ( vom 15. Februar 2010 im Internet Archive) (PDF; 2,1 MB), 2003.
- ↑ Skript Universität von Colorado
- ↑ Airport Winter Safety and Operations ( vom 10. Oktober 2008 im Internet Archive) (PDF; 432 kB)
- ↑ Patent DE19638319C1: Verfahren zur Herstellung von Celluloseformiaten, Celluloseacetaten, Cellulosepropionaten und Cellulosebutyraten mit Substitutionsgraden von 0,1 bis 0,4 und mit verbesserten Löseeigenschaften und ihre Verwendung zur Herstellung von Celluloseregeneratprodukten. Angemeldet am 19. September 1996, veröffentlicht am 10. Juni 1998, Anmelder: Deutsche Institute für Textil- und Faserforschung, Erfinder: Frank Hermanutz, Wilhelm Oppermann.
- ↑ Universität Hohenheim: Forscher entdecken Medikament gegen Varroa-Milbe. 12. Januar 2018, abgerufen am 14. Januar 2018.
- ↑ Bettina Ziegelmann, Elisabeth Abele, Stefan Hannus, Michaela Beitzinger, Stefan Berg: Lithium chloride effectively kills the honey bee parasite Varroa destructor by a systemic mode of action. In: Scientific Reports. Band 8, Nr. 1, 12. Januar 2018, doi:10.1038/s41598-017-19137-5.
- ↑ Mellifera e. V.: Kritische Resonanz auf Artikel über Lithiumchlorid als Anti-Varroa-Mittel, abgerufen am 20. Februar 2018.