Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Xu L, Liu Y, Xu T, Chen E and Tang Y. (2024). Graph Augmentation Empowered Contrastive Learning for Recommendation. ACM Transactions on Information Systems. 43:2. (1-27). Online publication date: 31-Mar-2025.

    https://doi.org/10.1145/3677377

  • Möller L and Padó S. (2024). Explaining Neural News Recommendation with Attributions onto Reading Histories. ACM Transactions on Intelligent Systems and Technology. 16:1. (1-25). Online publication date: 28-Feb-2025.

    https://doi.org/10.1145/3673233

  • He P, Shi J, Ma W and Zheng X. (2024). Broad collaborative filtering with adjusted cosine similarity by fusing matrix completion. Applied Soft Computing. 165:C. Online publication date: 1-Nov-2024.

    https://doi.org/10.1016/j.asoc.2024.112075

  • Kruse J, Lindskow K, Kalloori S, Polignano M, Pomo C, Srivastava A, Uppal A, Andersen M and Frellsen J. EB-NeRD a large-scale dataset for news recommendation. Proceedings of the Recommender Systems Challenge 2024. (1-11).

    https://doi.org/10.1145/3687151.3687152

  • Bauer C, Bagchi C, Hundogan O and van Es K. (2024). Where Are the Values? A Systematic Literature Review on News Recommender Systems. ACM Transactions on Recommender Systems. 2:3. (1-40). Online publication date: 30-Sep-2024.

    https://doi.org/10.1145/3654805

  • Wang S, Wang W, Zhang X, Wang Y, Liu H and Chen F. A Hierarchical and Disentangling Interest Learning Framework for Unbiased and True News Recommendation. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. (3200-3211).

    https://doi.org/10.1145/3637528.3671944

  • Pathak R and Spezzano F. An Empirical Analysis of Intervention Strategies’ Effectiveness for Countering Misinformation Amplification by Recommendation Algorithms. Advances in Information Retrieval. (285-301).

    https://doi.org/10.1007/978-3-031-56066-8_23

  • Khritankov A. (2023). Positive feedback loops lead to concept drift in machine learning systems. Applied Intelligence. 53:19. (22648-22666). Online publication date: 1-Oct-2023.

    https://doi.org/10.1007/s10489-023-04615-3

  • Wang Z and Fu X. Enhanced Semantic Matching with Topic-aware and Fine-grained User Modeling for News Recommendation. Proceedings of the 2023 2nd International Conference on Algorithms, Data Mining, and Information Technology. (189-195).

    https://doi.org/10.1145/3625403.3625437

  • Michiels L, Vannieuwenhuyze J, Leysen J, Verachtert R, Smets A and Goethals B. How Should We Measure Filter Bubbles? A Regression Model and Evidence for Online News. Proceedings of the 17th ACM Conference on Recommender Systems. (640-651).

    https://doi.org/10.1145/3604915.3608805

  • Yang J, Lin J, Gui F, Meng H, Chen H and An N. StoryLens: Personalizing News Recommendations for Older Adults with Their Life Stories. HCI International 2023 – Late Breaking Papers. (246-263).

    https://doi.org/10.1007/978-3-031-48041-6_18

  • Pourashraf P and Mobasher B. Modeling Users’ Localized Preferences for More Effective News Recommendation. Artificial Intelligence in HCI. (366-382).

    https://doi.org/10.1007/978-3-031-35894-4_27

  • Dokoupil P. Long-term fairness for Group Recommender Systems with Large Groups. Proceedings of the 16th ACM Conference on Recommender Systems. (724-726).

    https://doi.org/10.1145/3523227.3547424

  • Treuillier C, Castagnos S, Dufraisse E and Brun A. Being Diverse is Not Enough: Rethinking Diversity Evaluation to Meet Challenges of News Recommender Systems. Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization. (222-233).

    https://doi.org/10.1145/3511047.3538030

  • Usman M, Ahmad F, Habib U, Cheema A, Aftab M, Ahmad M and Asghar M. (2022). Combining Latent Factor Model for Dynamic Recommendations in Community Question Answering Forums. Computational Intelligence and Neuroscience. 2022. Online publication date: 1-Jan-2022.

    https://doi.org/10.1155/2022/7191657

  • Ojeniyi A, Ajibade S, Obafunmiso C, Adegbite-Badmus T and Forestiero A. (2022). Computational Model of Recommender System Intervention. Applied Computational Intelligence and Soft Computing. 2022. Online publication date: 1-Jan-2022.

    https://doi.org/10.1155/2022/3794551