Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Alavani G, Desai J, Saha S and Sarkar S. (2023). Program Analysis and Machine Learning–based Approach to Predict Power Consumption of CUDA Kernel. ACM Transactions on Modeling and Performance Evaluation of Computing Systems. 8:4. (1-24). Online publication date: 31-Dec-2024.

    https://doi.org/10.1145/3603533

  • O'Neal K, Brisk P, Shriver E and Kishinevsky M. (2019). Hardware-Assisted Cross-Generation Prediction of GPUs Under Design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 38:6. (1133-1146). Online publication date: 1-Jun-2019.

    https://doi.org/10.1109/TCAD.2018.2834398

  • O'Neal K, Liu M, Tang H, Kalantar A, DeRenard K and Brisk P. HLSPredict. Proceedings of the International Conference on Computer-Aided Design. (1-8).

    https://doi.org/10.1145/3240765.3264635

  • O'neal K, Brisk P, Abousamra A, Waters Z and Shriver E. (2017). GPU Performance Estimation using Software Rasterization and Machine Learning. ACM Transactions on Embedded Computing Systems. 16:5s. (1-21). Online publication date: 10-Oct-2017.

    https://doi.org/10.1145/3126557

  • O'Neal K, Brisk P, Shriver E and Kishinevsky M. HALWPE. Proceedings of the 54th Annual Design Automation Conference 2017. (1-6).

    https://doi.org/10.1145/3061639.3062257

  • Allen T and Ge R. Characterizing power and performance of GPU memory access. Proceedings of the 4th International Workshop on Energy Efficient Supercomputing. (46-53).

    /doi/10.5555/3018076.3018083

  • Jia W, Garza E, Shaw K and Martonosi M. (2015). GPU Performance and Power Tuning Using Regression Trees. ACM Transactions on Architecture and Code Optimization. 12:2. (1-26). Online publication date: 8-Jul-2015.

    https://doi.org/10.1145/2736287

  • Mittal S and Vetter J. (2014). A Survey of Methods for Analyzing and Improving GPU Energy Efficiency. ACM Computing Surveys. 47:2. (1-23). Online publication date: 8-Jan-2015.

    https://doi.org/10.1145/2636342

  • Lim J, Lakshminarayana N, Kim H, Song W, Yalamanchili S and Sung W. (2014). Power Modeling for GPU Architectures Using McPAT. ACM Transactions on Design Automation of Electronic Systems. 19:3. (1-24). Online publication date: 1-Jun-2014.

    https://doi.org/10.1145/2611758

  • Jia W, Shaw K and Martonosi M. Starchart. Proceedings of the 22nd international conference on Parallel architectures and compilation techniques. (257-268).

    /doi/10.5555/2523721.2523757