Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Hu X, Yi K and Tao Y. (2019). Output-Optimal Massively Parallel Algorithms for Similarity Joins. ACM Transactions on Database Systems. 44:2. (1-36). Online publication date: 30-Jun-2019.

    https://doi.org/10.1145/3311967

  • Fan W and Lu P. (2019). Dependencies for Graphs. ACM Transactions on Database Systems. 44:2. (1-40). Online publication date: 8-Apr-2019.

    https://doi.org/10.1145/3287285

  • Dautrich J and Ravishankar C. (2019). Inferring Insertion Times and Optimizing Error Penalties in Time-decaying Bloom Filters. ACM Transactions on Database Systems. 44:2. (1-32). Online publication date: 8-Apr-2019.

    https://doi.org/10.1145/3284552

  • Chang K, Yağlıkçı A, Ghose S, Agrawal A, Chatterjee N, Kashyap A, Lee D, O'Connor M, Hassan H and Mutlu O. (2017). Understanding Reduced-Voltage Operation in Modern DRAM Devices. Proceedings of the ACM on Measurement and Analysis of Computing Systems. 1:1. (1-42). Online publication date: 13-Jun-2017.

    https://doi.org/10.1145/3084447

  • Ju X, Jamjoom H and Shin K. (2017). Hieroglyph. Proceedings of the ACM on Measurement and Analysis of Computing Systems. 1:1. (1-25). Online publication date: 13-Jun-2017.

    https://doi.org/10.1145/3084446

  • (2016). Recognizing projections of algebraic curves. Graphical Models. 87:C. (1-10). Online publication date: 1-Sep-2016.

    https://doi.org/10.1016/j.gmod.2016.07.002

  • Alcázar J, Hermoso C and Muntingh G. (2015). Symmetry detection of rational space curves from their curvature and torsion. Computer Aided Geometric Design. 33:C. (51-65). Online publication date: 1-Feb-2015.

    https://doi.org/10.1016/j.cagd.2015.01.003

  • Weimann M. (2012). Algebraic Osculation and Application to Factorization of Sparse Polynomials. Foundations of Computational Mathematics. 12:2. (173-201). Online publication date: 1-Apr-2012.

    /doi/10.5555/3115500.3115915

  • Weimann M. (2012). Algebraic Osculation and Application to Factorization of Sparse Polynomials. Foundations of Computational Mathematics. 10.1007/s10208-012-9114-z. 12:2. (173-201). Online publication date: 1-Apr-2012.

    http://link.springer.com/10.1007/s10208-012-9114-z

  • Adrovic D and Verschelde J. (2011). Tropical algebraic geometry in Maple. Journal of Symbolic Computation. 46:7. (755-772). Online publication date: 1-Jul-2011.

    https://doi.org/10.1016/j.jsc.2010.08.011

  • Bertone C, Chèze G and Galligo A. (2010). Modular Las Vegas algorithms for polynomial absolute factorization. Journal of Symbolic Computation. 45:12. (1280-1295). Online publication date: 1-Dec-2010.

    https://doi.org/10.1016/j.jsc.2010.06.010

  • Lichtblau D. Polynomial GCD and Factorization via Approximate Gröbner Bases. Proceedings of the 2010 12th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. (29-36).

    https://doi.org/10.1109/SYNASC.2010.76

  • Bertone C, Chéze G and Galligo A. (2010). Probabilistic algorithms for polynomial absolute factorization. ACM Communications in Computer Algebra. 43:3/4. (77-78). Online publication date: 24-Jun-2010.

    https://doi.org/10.1145/1823931.1823936

  • Elkadi M, Galligo A and Weimann M. (2009). Towards toric absolute factorization. Journal of Symbolic Computation. 44:9. (1194-1211). Online publication date: 1-Sep-2009.

    https://doi.org/10.1016/j.jsc.2008.03.007

  • Leykin A and Verschelde J. (2009). Decomposing solution sets of polynomial systems: a new parallel monodromy breakup algorithm. International Journal of Computational Science and Engineering. 4:2. (94-101). Online publication date: 1-Jul-2009.

    https://doi.org/10.1504/IJCSE.2009.027001

  • Roach K. (2009). Solving integrals with the quantum computer algebra system. ACM Communications in Computer Algebra. 42:3. (167-168). Online publication date: 6-Feb-2009.

    https://doi.org/10.1145/1504347.1504371

  • Li Z, Ondera M and Wang H. (2009). Simplifying skew fractions modulo differential and difference relations. ACM Communications in Computer Algebra. 42:3. (164-165). Online publication date: 6-Feb-2009.

    https://doi.org/10.1145/1504347.1504369

  • Chen C, Li L, Maza M, Pan W and Xie Y. (2009). On the representation of constructible sets. ACM Communications in Computer Algebra. 42:3. (162-163). Online publication date: 6-Feb-2009.

    https://doi.org/10.1145/1504347.1504368

  • Cuyt A and Lee W. (2009). Sparse multivariate polynomial interpolation via the quotient-difference algorithm. ACM Communications in Computer Algebra. 42:3. (154-155). Online publication date: 6-Feb-2009.

    https://doi.org/10.1145/1504347.1504363

  • Chèze G, Elkadi M, Galligo A and Weimann M. (2009). Absolute factoring of bidegree bivariate polynomials. ACM Communications in Computer Algebra. 42:3. (151-153). Online publication date: 6-Feb-2009.

    https://doi.org/10.1145/1504347.1504362

  • Gao X and Huang Z. (2009). A characteristic set method for equation solving over finite fields. ACM Communications in Computer Algebra. 42:3. (149-150). Online publication date: 6-Feb-2009.

    https://doi.org/10.1145/1504347.1504361

  • Kaltofen E, May J, Yang Z and Zhi L. (2008). Approximate factorization of multivariate polynomials using singular value decomposition. Journal of Symbolic Computation. 43:5. (359-376). Online publication date: 1-May-2008.

    https://doi.org/10.1016/j.jsc.2007.11.005

  • Nagasaka K. Ruppert matrix as subresultant mapping. Proceedings of the 10th international conference on Computer Algebra in Scientific Computing. (316-327).

    /doi/10.5555/2396194.2396218

  • Moreno Maza M, Reid G, Scott R and Wu W. On Approximate Linearized Triangular Decompositions. Symbolic-Numeric Computation. 10.1007/978-3-7643-7984-1_17. (279-298).

    http://www.springerlink.com/index/10.1007/978-3-7643-7984-1_17

  • Nagasaka K. Ruppert Matrix as Subresultant Mapping. Computer Algebra in Scientific Computing. 10.1007/978-3-540-75187-8_24. (316-327).

    http://link.springer.com/10.1007/978-3-540-75187-8_24

  • Chèze G and Galligo A. (2006). From an approximate to an exact absolute polynomial factorization. Journal of Symbolic Computation. 41:6. (682-696). Online publication date: 1-Jun-2006.

    https://doi.org/10.1016/j.jsc.2005.11.004

  • Flynn M. (1978). A canonic interpretive program form for measuring "ideal" HLL architectures. ACM SIGARCH Computer Architecture News. 6:8. (6-15). Online publication date: 1-Apr-1978.

    https://doi.org/10.1145/1216467.1216469