Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Algebraic Osculation and Application to Factorization of Sparse Polynomials

Published: 01 April 2012 Publication History

Abstract

We prove a theorem on algebraic osculation and apply our result to the computer algebra problem of polynomial factorization. We consider X a smooth completion of ź2 and D an effective divisor with support the boundary źX=Xźź2. Our main result gives explicit conditions that are necessary and sufficient for a given Cartier divisor on the subscheme $(|D|,\mathcal{O}_{D})$ to extend to X. These osculation criteria are expressed with residues. When applied to the toric setting, our result gives rise to a new algorithm for factoring sparse bivariate polynomials which takes into account the geometry of the Newton polytope.

References

[1]
F. Abu Salem, S. Gao, A.G.B. Lauder, Factoring polynomials via polytopes, in Proc. of ISSAC (2004), pp. 4---11.
[2]
M. Avendano, T. Krick, M. Sombra, Factoring bivariate sparse (lacunary) polynomials, J. Complex.23, 193---216 (2007).
[3]
W.P. Barth, K. Hulek, C.A.M. Peters, A. Van De Ven, Compact Complex Surfaces, 2nd edn. (Springer, Berlin, 2004).
[4]
K. Belabas, M. van Hoeij, J. Kluners, A. Steel, Factoring polynomials over global fields, J. Théor. Nr. Bordx.21(1), 15---39 (2009).
[5]
G. Chèze, Absolute polynomial factorization in two variables and the knapsack problem, in Proc. of ISSAC (2004), pp. 87---94.
[6]
G. Chèze, A. Galligo, From an approximate to an exact factorization, J. Symb. Comput.41(6), 682---696 (2006).
[7]
G. Chèze, G. Lecerf, Lifting and recombination techniques for absolute factorization, J. Complex.23(3), 380---420 (2007).
[8]
V. Danilov, The geometry of toric varieties, Russ. Math. Surv.33, 97---154 (1978).
[9]
M. Elkadi, A. Galligo, M. Weimann, Towards toric absolute factorization, J. Symb. Comput.44(9), 1194---1211 (2009).
[10]
W. Fulton, Introduction to Toric Varieties. Annals of Math. Studies (Princeton University Press, Princeton, 1993).
[11]
A. Galligo, D. Rupprecht, Irreducible decomposition of curves, J. Symb. Comput.33, 661---677 (2002).
[12]
S. Gao, A.G.B. Lauder, Decomposition of polytopes and polynomials, Discrete Comput. Geom.6(1), 89---124 (2001).
[13]
M.L. Green, Secant functions, the Reiss relation and its converse, Trans. Am. Math. Soc.280(2), 499---507 (1983).
[14]
P.A. Griffiths, Variations on a theorem of Abel, Invent. Math.35, 321---390 (1976).
[15]
P.A. Griffiths, J. Harris, Principles of Algebraic Geometry. Pure and Applied Mathematics (Wiley-Interscience, New York, 1978).
[16]
P.A. Griffiths, J. Harris, Residues and zero-cycles on algebraic varieties, Ann. Math.128, 461---505 (1978).
[17]
G. Henkin, M. Passare, Abelian differentials on singular varieties and variation on a theorem of Lie-Griffiths, Invent. Math.135, 297---328 (1999).
[18]
A.G. Khovansky, Newton polyhedra and toric varieties, Funct. Anal. Appl.11, 56---67 (1977).
[19]
G. Lecerf, Improved dense multivariate polynomial factorization algorithms, J. Symb. Comput.42, 477---494 (2007).
[20]
A.M. Ostrowski, On multiplication and factorization of polynomials. Lexicographic orderings and extreme aggregates of terms, Aequ. Math.13, 201---228 (1975).
[21]
A. Tsikh, Multidimensional residues and their applications, Trans. Am. Math. Soc.103 (1992).
[22]
J. von zur Gathen, J. Gerhard, Modern Computer Algebra, 1st edn. (Cambridge University Press, Cambridge, 1999).
[23]
M. Weimann, Trace et calcul résiduel: nouvelle version du théorème d'Abel-inverse et formes abéliennes, Ann. Toulouse16(2), 397---424 (2007).
[24]
M. Weimann, An interpolation theorem in toric varieties, Ann. Inst. Fourier58(4), 1371---1381 (2008).
[25]
M. Weimann, A lifting and recombination algorithm for rational factorization of sparse polynomials, J. Complex.26(6), 608---628 (2010).
[26]
J.A. Wood, Osculation by algebraic hypersurfaces, J. Differ. Geom.18, 563---573 (1983).

Cited By

View all
  1. Algebraic Osculation and Application to Factorization of Sparse Polynomials

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Foundations of Computational Mathematics
      Foundations of Computational Mathematics  Volume 12, Issue 2
      April 2012
      123 pages
      ISSN:1615-3375
      EISSN:1615-3383
      Issue’s Table of Contents

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 01 April 2012

      Author Tags

      1. 13P05
      2. 14C20
      3. 14M25
      4. 32A27
      5. 32C30
      6. 32C37
      7. Cohomology
      8. Curves
      9. Duality
      10. Line bundles
      11. Newton polytope
      12. Osculation
      13. Polynomial factorization
      14. Residue
      15. Toric varieties

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 01 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media