Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Superinterpolation in Highly Oscillatory Quadrature

Published: 01 April 2012 Publication History

Abstract

Asymptotic expansions for oscillatory integrals typically depend on the values and derivatives of the integrand at a small number of critical points. We show that using values of the integrand at certain complex points close to the critical points can actually yield a higher asymptotic order approximation to the integral. This superinterpolation property has interesting ramifications for numerical methods based on exploiting asymptotic behaviour. The asymptotic convergence rates of Filon-type methods can be doubled at no additional cost. Numerical steepest descent methods already exhibit this high asymptotic order, but their analyticity requirements can be significantly relaxed. The method can be applied to general oscillators with stationary points as well, through a simple change of variables.

References

[1]
J.-P. Berrut, L.N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev.46, 501---517 (2004).
[2]
M.V. Berry, C.J. Howls, Hyperasymptotics for integrals with saddles, Proc. R. Soc. A434(1892), 657---675 (1991).
[3]
N. Bleistein, R. Handelsman, Asymptotic Expansions of Integrals (Holt, Rinehart and Winston, New York, 1975).
[4]
J.P. Boyd, The devil's invention: asymptotic, superasymptotic and hyperasymptotic series, Acta Appl. Math.56(1), 1---29 (1999).
[5]
S.N. Chandler-Wilde, D.C. Hothersall, Efficient calculation of the Green function for acoustic propagation above a homogeneous impedance plane, J. Sound Vib.180(5), 705---724 (1995).
[6]
R. Cools, A. Haegemans, Algorithm 824: CUBPACK: a package for automatic cubature; framework description, ACM Trans. Math. Softw.29(3), 287---296 (2003).
[7]
K.T.R. Davies, M.R. Strayer, G.D. White, Complex-plane methods for evaluating highly oscillatory integrals in nuclear physics. I, J. Phys. G: Nucl. Phys.14(7), 961---972 (1988).
[8]
P.J. Davis, P. Rabinowitz, Methods of Numerical Integration. Computer Science and Applied Mathematics (Academic Press, New York, 1984).
[9]
A. Deaño, D. Huybrechs, Complex Gaussian quadrature of oscillatory integrals, Numer. Math.112(2), 197---219 (2009).
[10]
A. Deaño, D. Huybrechs, A.B.J. Kuijlaars, Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature, J. Approx. Theory162(12), 2202---2224 (2010).
[11]
V. Domínguez, I.G. Graham, V.P. Smyshlyaev, Stability and error estimates for Filon---Clenshaw---Curtis rules for highly-oscillatory integrals, IMA J. Numer. Anal. (2011).
[12]
J.D. Donaldson, D. Elliott, A unified approach to quadrature rules with asymptotic estimates of their remainders, SIAM J. Numer. Anal.9, 573---602 (1972).
[13]
G.A. Evans, J.R. Webster, A comparison of some methods for the evaluation of highly oscillatory integrals, J. Comput. Appl. Math.112(1), 55---69 (1999).
[14]
A. Gil, J. Segura, N.M. Temme, Numerical Methods for Special Functions (SIAM, Philadelphia, 2007).
[15]
A. Glaser, X. Liu, V. Rokhlin, A fast algorithm for the calculation of the roots of special functions, SIAM J. Sci. Comput.29(4), 1420---1438 (2008).
[16]
G.H. Golub, J.H. Welsch, Calculation of Gauss quadrature rules, Math. Comput.23(106), 221---230 (1969).
[17]
D. Huybrechs, S. Olver, Highly oscillatory quadrature, in Highly Oscillatory Problems, ed. by B. Engquist, A. Fokas, E. Hairer, A. Iserles (eds.) (Cambridge University Press, Cambridge, 2009), pp. 25---50.
[18]
D. Huybrechs, S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic continuation, SIAM J. Numer. Anal.44(3), 1026---1048 (2006).
[19]
A. Iserles, S.P. NØrsett, On quadrature methods for highly oscillatory integrals and their implementation, BIT44(4), 755---772 (2004).
[20]
A. Iserles, S.P. NØrsett, Efficient quadrature of highly oscillatory integrals using derivatives, Proc. R. Soc. Lond. A461, 1383---1399 (2005).
[21]
J.C. Mason, D.C. Handscomb, Chebyshev Polynomials (Chapman and Hall/CRC Press, London/Boca Raton, 2003).
[22]
J.M. Melenk, On the convergence of Filon quadrature, J. Comput. Appl. Math.234, 1692---1701 (2010).
[23]
F.W.J. Olver, Asymptotics and Special Functions (Academic Press, New York, 1974).
[24]
F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010).
[25]
S. Olver, Moment-free numerical approximation of highly oscillatory integrals with stationary points, Eur. J. Appl. Math.18, 435---447 (2006).
[26]
S. Olver, Fast, numerically stable computation of oscillatory integrals with stationary points, BIT50, 149---171 (2010).
[27]
R. Paris, On the use of Hadamard expansions in hyperasymptotic evaluation of Laplace-type integrals. I: real variable, J. Comput. Appl. Math.167(2), 293---319 (2004).
[28]
R.B. Paris, Exactification of the method of steepest descents: the Bessel functions of large order and argument, Proc. R. Soc. A460(2049), 2737---2759 (2004).
[29]
A. Talbot, The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl.23(1), 97---120 (1979).
[30]
R. Wong, Asymptotic Approximation of Integrals (SIAM, Philadelphia, 2001).
[31]
S. Xiang, Efficient Filon-type methods for $\int_{a}^{b}f(x)\,\mathrm {e}^{\mathrm{i}}\omega g(x)\,\mathrm{d}x$, Numer. Math.105(4), 658 (2007).

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Foundations of Computational Mathematics
Foundations of Computational Mathematics  Volume 12, Issue 2
April 2012
123 pages
ISSN:1615-3375
EISSN:1615-3383
Issue’s Table of Contents

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 April 2012

Author Tags

  1. 65D32
  2. 65R10
  3. Asymptotics
  4. Oscillatory integrals
  5. Quadrature
  6. Steepest descent

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2019)Stable application of Filon–Clenshaw–Curtis rules to singular oscillatory integrals by exponential transformationsBIT10.1007/s10543-018-0730-059:1(155-181)Online publication date: 1-Mar-2019
  • (2018)Automatic computing of oscillatory integralsNumerical Algorithms10.1007/s11075-017-0343-877:3(867-884)Online publication date: 1-Mar-2018
  • (2017)FilonClenshawCurtis formulas for highly oscillatory integrals in the presence of stationary pointsApplied Numerical Mathematics10.1016/j.apnum.2017.02.003117:C(87-102)Online publication date: 1-Jul-2017
  • (2017)On the numerical approximation for Fourier-type highly oscillatory integrals with Gauss-type quadrature rulesApplied Mathematics and Computation10.1016/j.amc.2017.03.021308:C(96-104)Online publication date: 1-Sep-2017
  • (2017)An adaptive Filon-type method for oscillatory integrals without stationary pointsNumerical Algorithms10.1007/s11075-016-0219-375:3(753-775)Online publication date: 1-Jul-2017
  • (2015)New quadrature rules for highly oscillatory integrals with stationary pointsJournal of Computational and Applied Mathematics10.1016/j.cam.2014.09.019278:C(75-89)Online publication date: 15-Apr-2015

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media