Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Yang L, Shakeri A, Pu L, Chen W and Shu Y. (2025). Efficient Clustered Federated Learning by Locality Sensitive Hashing. Advanced Data Mining and Applications. 10.1007/978-981-96-0814-0_12. (177-191).

    https://link.springer.com/10.1007/978-981-96-0814-0_12

  • Lin S, Yuan H, Liu G, Xian X, Cui Z and Zhao P. (2025). Feature-Adaptive Meets Domain-Specific Networks for Multi-domain Recommendation. Web Information Systems Engineering – WISE 2024. 10.1007/978-981-96-0570-5_3. (32-47).

    https://link.springer.com/10.1007/978-981-96-0570-5_3

  • Kanopka K and Domingue B. (2024). A Position-Sensitive Mixture Item Response Model. Journal of Educational and Behavioral Statistics. 10.3102/10769986241289399.

    https://journals.sagepub.com/doi/10.3102/10769986241289399

  • Kim Y and Chang T. (2024). Deep Learning-Based Freight Recommendation System for Freight Brokerage Platform. Systems. 10.3390/systems12110477. 12:11. (477).

    https://www.mdpi.com/2079-8954/12/11/477

  • Zhong D, Wang X, Xu Z, Xu J and Wang W. Interaction-level Membership Inference Attack against Recommender Systems with Long-tailed Distribution. Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. (3433-3442).

    https://doi.org/10.1145/3627673.3679804

  • Xi Y, Liu W, Lin J, Chen B, Tang R, Zhang W and Yu Y. MemoCRS: Memory-enhanced Sequential Conversational Recommender Systems with Large Language Models. Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. (2585-2595).

    https://doi.org/10.1145/3627673.3679599

  • Yong J and Kim C. (2024). Hybrid Inductive Graph Method for Matrix Completion. International Journal of Data Warehousing and Mining. 20:1. (1-16). Online publication date: 15-Oct-2024.

    https://doi.org/10.4018/IJDWM.345361

  • Monteil J, Vaskovych V, Lu W, Majumder A and van den Hengel A. MARec: Metadata Alignment for cold-start Recommendation. Proceedings of the 18th ACM Conference on Recommender Systems. (401-410).

    https://doi.org/10.1145/3640457.3688125

  • Rungtranont P and Mongkolnavin J. (2024). Using Large Language Models as user Interests Interpretation for Solving Cold-Start Item Recommendation 2024 23rd International Symposium on Communications and Information Technologies (ISCIT). 10.1109/ISCIT63075.2024.10793679. 979-8-3503-5395-2. (36-40).

    https://ieeexplore.ieee.org/document/10793679/

  • Martin C, Boutilier C, Meshi O and Sandholm T. Model-free preference elicitation. Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence. (3493-3503).

    https://doi.org/10.24963/ijcai.2024/387

  • Al-Hazwani I, Luo T, Inel O, Ricci F, El-Assady M and Bernard J. ScrollyPOI: A Narrative-Driven Interactive Recommender System for Points-of-Interest Exploration and Explainability. Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization. (292-304).

    https://doi.org/10.1145/3631700.3665183

  • B G, Balamurugan K, Balamurugan A and Balamurugan A. (2024). Optimizing Recommendation Systems : A Hybrid Approach for Improved Accuracy 2024 Second International Conference on Inventive Computing and Informatics (ICICI). 10.1109/ICICI62254.2024.00084. 979-8-3503-7329-5. (484-489).

    https://ieeexplore.ieee.org/document/10675645/

  • Zhong S, Huang Z, Li D, Wen W, Qin J and Lin L. Mirror Gradient: Towards Robust Multimodal Recommender Systems via Exploring Flat Local Minima. Proceedings of the ACM Web Conference 2024. (3700-3711).

    https://doi.org/10.1145/3589334.3645553

  • Zeng J, Nakano Y and Sakato T. (2024). Implementation and Evaluation of Interviewer’s Response Generation Model Considering Semantic Content意味内容に基づくインタビュアー応答生成モデルの作成と評価. Transactions of the Japanese Society for Artificial Intelligence. 10.1527/tjsai.39-3_IDS6-A. 39:3. (IDS6-A_1-15). Online publication date: 1-May-2024.

    https://www.jstage.jst.go.jp/article/tjsai/39/3/39_39-3_IDS6-A/_article/-char/ja/

  • Asri B, Igmoullan I and Qassimi S. Integrating Active Learning Strategies in Model Based Recommender Systems. Proceedings of the 7th International Conference on Networking, Intelligent Systems and Security. (1-8).

    https://doi.org/10.1145/3659677.3659838

  • Sohier H, Barbedienne R, Ouerk S and Yaya Yeo S. (2024). Exploration Principles for Decision-Making Systems with Binary Feedbacks 2024 IEEE International Systems Conference (SysCon). 10.1109/SysCon61195.2024.10553578. 979-8-3503-5880-3. (1-8).

    https://ieeexplore.ieee.org/document/10553578/

  • Zhang L, Zhang W, Wu L, He M and Zhao H. (2023). SHGCN: Socially Enhanced Heterogeneous Graph Convolutional Network for Multi-behavior Prediction. ACM Transactions on the Web. 18:1. (1-27). Online publication date: 29-Feb-2024.

    https://doi.org/10.1145/3617510

  • Mondal P, Kapoor P, Singh S, Saha S, Singh J and Singh A. Genre Effect Toward Developing a Multi-Modal Movie Recommendation System in Indian Setting. IEEE Transactions on Consumer Electronics. 10.1109/TCE.2023.3324009. 70:1. (2517-2526).

    https://ieeexplore.ieee.org/document/10286147/

  • Gao S, Zhang L, Liu H and Wang Y. (2024). Which Animation API Should I Use Next? A Multimodal Real-Time Animation API Recommendation Model for Android Apps. IEEE Transactions on Software Engineering. 50:1. (106-122). Online publication date: 1-Jan-2024.

    https://doi.org/10.1109/TSE.2023.3338728

  • Xia Z, Sun A, Xu J, Peng Y, Ma R and Cheng M. Contemporary Recommendation Systems on Big Data and Their Applications: A Survey. IEEE Access. 10.1109/ACCESS.2024.3517492. 12. (196914-196928).

    https://ieeexplore.ieee.org/document/10798416/

  • Mondal P, Kapoor P, Singh S, Saha S, Onoe N and Singh B. (2024). Impulsion of Movie’s Content-Based Factors in Multi-modal Movie Recommendation System. Neural Information Processing. 10.1007/978-981-99-8184-7_18. (230-242).

    https://link.springer.com/10.1007/978-981-99-8184-7_18

  • Ntini S, Sibanda E and Temidayo O. (2024). Multidimensional Insights into Recommender Systems: A Systematic Review of Evaluation Metrics and Thematic Applications. Software Engineering Methods Design and Application. 10.1007/978-3-031-70285-3_29. (382-403).

    https://link.springer.com/10.1007/978-3-031-70285-3_29

  • Wang C, Cai Z, Seo D and Li Y. TMETA: Trust Management for the Cold Start of IoT Services With Digital-Twin-Aided Blockchain. IEEE Internet of Things Journal. 10.1109/JIOT.2023.3285108. 10:24. (21337-21348).

    https://ieeexplore.ieee.org/document/10148060/

  • Jin J, Chen X, Ye F, Yang M, Feng Y, Zhang W, Yu Y and Wang J. Lending interaction wings to recommender systems with conversational agents. Proceedings of the 37th International Conference on Neural Information Processing Systems. (27951-27979).

    /doi/10.5555/3666122.3667335

  • Cheng L. Sentiment Analysis-based Recommendation System Architecture. Proceedings of the 2023 5th International Conference on Internet of Things, Automation and Artificial Intelligence. (744-750).

    https://doi.org/10.1145/3653081.3653206

  • Shtar G, Solomon A, Mazuz E, Rokach L, Shapira B and Eberini I. (2023). A simplified similarity-based approach for drug-drug interaction prediction. PLOS ONE. 10.1371/journal.pone.0293629. 18:11. (e0293629).

    https://dx.plos.org/10.1371/journal.pone.0293629

  • Zhang X, Wu B and Ye Y. (2023). Graph attentive matrix factorization for social recommendation. Expert Systems. 10.1111/exsy.13385. 40:9. Online publication date: 1-Nov-2023.

    https://onlinelibrary.wiley.com/doi/10.1111/exsy.13385

  • Guerraoui R, Kermarrec A, Niot G, Ruas O and Taïani F. GoldFinger: Fast & Approximate Jaccard for Efficient KNN Graph Constructions. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2022.3232689. 35:11. (11461-11475).

    https://ieeexplore.ieee.org/document/10003261/

  • Vomberg A, Schauerte N, Krakowski S, Ingram Bogusz C, Gijsenberg M and Bleier A. (2023). The cold-start problem in nascent AI strategy: Kickstarting data network effects. Journal of Business Research. 10.1016/j.jbusres.2023.114236. 168. (114236). Online publication date: 1-Nov-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0148296323005957

  • Cho H, Lee D and Lee J. (2022). User acceptance on content optimization algorithms: predicting filter bubbles in conversational AI services. Universal Access in the Information Society. 22:4. (1325-1338). Online publication date: 1-Nov-2023.

    https://doi.org/10.1007/s10209-022-00913-8

  • Turgut H, Yetki T, Bali Ö and Yücel T. Prod2Vec-Var: A Session Based Recommendation System with Enhanced Diversity. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. (5253-5254).

    https://doi.org/10.1145/3583780.3615995

  • Liu Z, Mei S, Xiong C, Li X, Yu S, Liu Z, Gu Y and Yu G. Text Matching Improves Sequential Recommendation by Reducing Popularity Biases. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. (1534-1544).

    https://doi.org/10.1145/3583780.3615077

  • Ong R, Qiu W and Khong A. Quad-Tier Entity Fusion Contrastive Representation Learning for Knowledge Aware Recommendation System. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. (1949-1959).

    https://doi.org/10.1145/3583780.3615020

  • Spillo G. Knowledge-Aware Recommender Systems based on Multi-Modal Information Sources. Proceedings of the 17th ACM Conference on Recommender Systems. (1312-1317).

    https://doi.org/10.1145/3604915.3608866

  • Fan Z, Xu K, Dong Z, Peng H, Zhang J and Yu P. Graph Collaborative Signals Denoising and Augmentation for Recommendation. Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. (2037-2041).

    https://doi.org/10.1145/3539618.3591994

  • Khamis I. (2023). The Use of Machine Learning in Libraries. Handbook of Research on Advancements of Contactless Technology and Service Innovation in Library and Information Science. 10.4018/978-1-6684-7693-2.ch002. (23-44).

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-6684-7693-2.ch002

  • Nie J, Xia S, Liu Y, Ding S, Hu L, Zhao M, Fan Y, Abdel-Aty M, Preindl M and Jiang X. A Data-Driven and Human-Centric EV Charging Recommendation System at City-Scale. Proceedings of the 14th ACM International Conference on Future Energy Systems. (427-438).

    https://doi.org/10.1145/3575813.3597350

  • Spillo G. Combining Heterogeneous Embeddings for Knowledge-Aware Recommendation Models. Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization. (269-273).

    https://doi.org/10.1145/3565472.3595615

  • Colace F, D’Arienzo M, Lorusso A, Lombardi M, Santaniello D and Valentino C. (2023). A Novel Context Aware Paths Recommendation Approach for the Cultural Heritage Enhancement 2023 IEEE International Conference on Smart Computing (SMARTCOMP). 10.1109/SMARTCOMP58114.2023.00071. 979-8-3503-2281-1. (273-278).

    https://ieeexplore.ieee.org/document/10207593/

  • Zhang Y and Hara T. (2023). Explainable Integration of Social Media Background in a Dynamic Neural Recommender. ACM Transactions on Knowledge Discovery from Data. 17:3. (1-14). Online publication date: 30-Apr-2023.

    https://doi.org/10.1145/3550279

  • Agarwal M, Saket S and Mehrotra R. MEMER - Multimodal Encoder for Multi-signal Early-stage Recommendations. Companion Proceedings of the ACM Web Conference 2023. (773-777).

    https://doi.org/10.1145/3543873.3587679

  • Deng J, Ghasemkhani H, Tan Y and Tripathi A. (2023). Actions speak louder than words: Imputing users’ reputation from transaction history. Production and Operations Management. 10.1111/poms.13913. 32:4. (1096-1111). Online publication date: 1-Apr-2023.

    http://journals.sagepub.com/doi/10.1111/poms.13913

  • Victor Obionwu C, Singh Walia D, Tiwari T, Ghosh T, Broneske D and Saake G. (2023). Towards A Strategy for Developing a Project Partner Recommendation System for University Course Projects 2023 6th World Conference on Computing and Communication Technologies (WCCCT). 10.1109/WCCCT56755.2023.10052282. 978-1-6654-6146-7. (144-151).

    https://ieeexplore.ieee.org/document/10052282/

  • Pancholi D and Selvi C. (2023). Study of Cold-Start Product Recommendations and Its Solutions. Data Management, Analytics and Innovation. 10.1007/978-981-99-1414-2_4. (45-58).

    https://link.springer.com/10.1007/978-981-99-1414-2_4

  • Müllner P, Schmerda S, Theiler D, Lindstaedt S and Kowald D. Towards employing recommender systems for supporting data and algorithm sharing. Proceedings of the 1st International Workshop on Data Economy. (8-14).

    https://doi.org/10.1145/3565011.3569055

  • He F, Zhang W, Zhan N, Wang X and Li J. Graph Neural Network Recommendation Method Based on User Behavior. Proceedings of the 4th International Conference on Advanced Information Science and System. (1-7).

    https://doi.org/10.1145/3573834.3574487

  • Nie J, Hu L, Liu Y, Fan Y, Preindl M and Jiang X. Human-centric data-driven optimization and recommendation in EV-interfaced grid at city scale. Proceedings of the 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation. (295-296).

    https://doi.org/10.1145/3563357.3567752

  • Zitouni H. (2022). On Solving Cold Start Problem in Recommender Systems Using Web of Data 2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS). 10.1109/PAIS56586.2022.9946899. 978-1-6654-6161-0. (1-8).

    https://ieeexplore.ieee.org/document/9946899/

  • Liu H, Jing L, Yu D, Zhou M and Ng M. Learning Intrinsic and Extrinsic Intentions for Cold-start Recommendation with Neural Stochastic Processes. Proceedings of the 30th ACM International Conference on Multimedia. (491-500).

    https://doi.org/10.1145/3503161.3548302

  • Geng S, Liu S, Fu Z, Ge Y and Zhang Y. Recommendation as Language Processing (RLP): A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5). Proceedings of the 16th ACM Conference on Recommender Systems. (299-315).

    https://doi.org/10.1145/3523227.3546767

  • Li J, He Z, Cui Y, Wang C, Chen C, Yu C, Zhang M, Liu Y and Ma S. (2022). Towards Ubiquitous Personalized Music Recommendation with Smart Bracelets. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 6:3. (1-34). Online publication date: 6-Sep-2022.

    https://doi.org/10.1145/3550333

  • Jafri S, Ghazali R, Javid I, Mahmood Z, Hassan A and V. E. S. (2022). Deep transfer learning with multimodal embedding to tackle cold-start and sparsity issues in recommendation system. PLOS ONE. 10.1371/journal.pone.0273486. 17:8. (e0273486).

    https://dx.plos.org/10.1371/journal.pone.0273486

  • Zhang Y, Zhao C, Yuan M, Chen M and Liu X. Unifying attentive sparse autoencoder with neural collaborative filtering for recommendation. Intelligent Data Analysis. 10.3233/IDA-216049. 26:4. (841-857).

    https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-216049

  • Radlinski F, Balog K, Diaz F, Dixon L and Wedin B. On Natural Language User Profiles for Transparent and Scrutable Recommendation. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. (2863-2874).

    https://doi.org/10.1145/3477495.3531873

  • Chen Q, Kong D, Bao L, Sun C, Xia X and Li S. Code reviewer recommendation in tencent. Proceedings of the 44th International Conference on Software Engineering: Software Engineering in Practice. (115-124).

    https://doi.org/10.1145/3510457.3513035

  • Rodríguez-Pardo C, Patricio M, Berlanga A and Molina J. (2022). Machine Learning for Smart Tourism and Retail. Research Anthology on Machine Learning Techniques, Methods, and Applications. 10.4018/978-1-6684-6291-1.ch040. (753-775).

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-6684-6291-1.ch040

  • Portenoy J, Radensky M, West J, Horvitz E, Weld D and Hope T. Bursting Scientific Filter Bubbles: Boosting Innovation via Novel Author Discovery. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. (1-13).

    https://doi.org/10.1145/3491102.3501905

  • Sinha B and Dhanalakshmi R. (2022). Evolution of recommender paradigm optimization over time. Journal of King Saud University - Computer and Information Sciences. 10.1016/j.jksuci.2019.06.008. 34:4. (1047-1059). Online publication date: 1-Apr-2022.

    https://linkinghub.elsevier.com/retrieve/pii/S1319157819304963

  • Baracskay I, Baracskay III D, Iqbal M and Knijnenburg B. The Diversity of Music Recommender Systems. Companion Proceedings of the 27th International Conference on Intelligent User Interfaces. (97-100).

    https://doi.org/10.1145/3490100.3516474

  • Makhortykh M and Bastian M. (2020). Personalizing the war: Perspectives for the adoption of news recommendation algorithms in the media coverage of the conflict in Eastern Ukraine. Media, War & Conflict. 10.1177/1750635220906254. 15:1. (25-45). Online publication date: 1-Mar-2022.

    https://journals.sagepub.com/doi/10.1177/1750635220906254

  • Costa A, Ramos F, Perkusich M, Neto A, Silva L, Cunha F, Rique T, Almeida H and Perkusich A. A Genetic Algorithm-Based Approach to Support Forming Multiple Scrum Project Teams. IEEE Access. 10.1109/ACCESS.2022.3186347. 10. (68981-68994).

    https://ieeexplore.ieee.org/document/9807293/

  • Richa , Sharma C and Bedi P. (2022). Explanation-Based Serendipitous Recommender System (EBSRS). International Conference on Innovative Computing and Communications. 10.1007/978-981-16-3071-2_1. (1-18).

    https://link.springer.com/10.1007/978-981-16-3071-2_1

  • Chi Y, Wong R and Shepherd J. (2022). Popularity Forecasting for Emerging Research Topics at Its Early Stage of Evolution. Advanced Data Mining and Applications. 10.1007/978-3-031-22064-7_22. (290-303).

    https://link.springer.com/10.1007/978-3-031-22064-7_22

  • Fukuto K, Takagi T and Tian Y. (2021). Predicting the side effects of drugs using matrix factorization on spontaneous reporting database. Scientific Reports. 10.1038/s41598-021-03348-y. 11:1.

    https://www.nature.com/articles/s41598-021-03348-y

  • Barkan O, Hirsch R, Katz O, Caciularu A, Weill J and Koenigstein N. (2021). Cold Item Integration in Deep Hybrid Recommenders via Tunable Stochastic Gates 2021 IEEE International Conference on Data Mining (ICDM). 10.1109/ICDM51629.2021.00112. 978-1-6654-2398-4. (994-999).

    https://ieeexplore.ieee.org/document/9679061/

  • Qin J and Hong D. (2021). A Survey of Long-Tail Item Recommendation Methods. Wireless Communications and Mobile Computing. 10.1155/2021/7536316. 2021. (1-14). Online publication date: 29-Nov-2021.

    https://www.hindawi.com/journals/wcmc/2021/7536316/

  • Musto C, Narducci F, Polignano M, De Gemmis M, Lops P and Semeraro G. (2021). MyrrorBot: A Digital Assistant Based on Holistic User Models for Personalized Access to Online Services. ACM Transactions on Information Systems. 39:4. (1-34). Online publication date: 31-Oct-2021.

    https://doi.org/10.1145/3447679

  • Joy J, Raj N and V. G. R. (2021). Ontology-based E-learning Content Recommender System for Addressing the Pure Cold-start Problem. Journal of Data and Information Quality. 13:3. (1-27). Online publication date: 30-Sep-2021.

    https://doi.org/10.1145/3429251

  • Ranjbartabar H, Richards D, Bilgin A and Kutay C. Do you mind if I ask?. Proceedings of the 21st ACM International Conference on Intelligent Virtual Agents. (167-174).

    https://doi.org/10.1145/3472306.3478357

  • Yürekli A, Kaleli C and Bilge A. (2021). Alleviating the cold-start playlist continuation in music recommendation using latent semantic indexing. International Journal of Multimedia Information Retrieval. 10.1007/s13735-021-00214-5. 10:3. (185-198). Online publication date: 1-Sep-2021.

    https://link.springer.com/10.1007/s13735-021-00214-5

  • Ilyosov A, Kutlimuratov A and Whangbo T. (2021). Deep-Sequence–Aware Candidate Generation for e-Learning System. Processes. 10.3390/pr9081454. 9:8. (1454).

    https://www.mdpi.com/2227-9717/9/8/1454

  • Esheiba L, Elgammal A, Helal I and El-Sharkawi M. (2021). A Hybrid Knowledge-Based Recommender for Product-Service Systems Mass Customization. Information. 10.3390/info12080296. 12:8. (296).

    https://www.mdpi.com/2078-2489/12/8/296

  • Zhang Y, Maekawa T and Hara T. (2021). Using Social Media Background to Improve Cold-Start Recommendation Deep Models 2021 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN52387.2021.9534327. 978-1-6654-3900-8. (1-8).

    https://ieeexplore.ieee.org/document/9534327/

  • Kokkodis M and Ipeirotis P. (2021). Demand-Aware Career Path Recommendations. Management Science. 67:7. (4362-4383). Online publication date: 1-Jul-2021.

    https://doi.org/10.1287/mnsc.2020.3727

  • Wu J, Reyes G, White S, Zhang X and Bigham J. When can accessibility help?. Proceedings of the 18th International Web for All Conference. (1-12).

    https://doi.org/10.1145/3430263.3452434

  • Giakkoupis G, Kermarrec A, Ruas O and Taiani F. (2021). Cluster-and-Conquer: When Randomness Meets Graph Locality 2021 IEEE 37th International Conference on Data Engineering (ICDE). 10.1109/ICDE51399.2021.00195. 978-1-7281-9184-3. (2027-2032).

    https://ieeexplore.ieee.org/document/9458649/

  • Jeevamol J and Renumol V. (2021). An ontology-based hybrid e-learning content recommender system for alleviating the cold-start problem. Education and Information Technologies. 10.1007/s10639-021-10508-0.

    http://link.springer.com/10.1007/s10639-021-10508-0

  • Oppermann M, Kincaid R and Munzner T. VizCommender: Computing Text-Based Similarity in Visualization Repositories for Content-Based Recommendations. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2020.3030387. 27:2. (495-505).

    https://ieeexplore.ieee.org/document/9222280/

  • Zeng J and Nakano Y. (2021). Question Generation in Dialogue Systems based on Embedding Representation of Knowledge and Topics: Towards Food Preference Interview Systems知識と話題の埋め込み表現に基づく質問生成と対話システムへの適用―料理嗜好インタビューシステムに向けて―. Journal of Natural Language Processing. 10.5715/jnlp.28.598. 28:2. (598-631).

    https://www.jstage.jst.go.jp/article/jnlp/28/2/28_598/_article/-char/ja/

  • Maheswari M, Geetha S, Kumar S, Karuppiah M, Samanta D and Park Y. PEVRM: Probabilistic Evolution Based Version Recommendation Model for Mobile Applications. IEEE Access. 10.1109/ACCESS.2021.3053583. 9. (20819-20827).

    https://ieeexplore.ieee.org/document/9334979/

  • Roy C, Rautray S and Pandey M. (2021). Recommender System for Resolving the Cold Start Challenges Using Classification. Smart Computing Techniques and Applications. 10.1007/978-981-16-1502-3_45. (451-460).

    https://link.springer.com/10.1007/978-981-16-1502-3_45

  • Pereira F, Junior H, Rodriguez L, Toda A, Oliveira E, Cristea A, Oliveira D, Carvalho L, Fonseca S, Alamri A and Isotani S. (2021). A Recommender System Based on Effort: Towards Minimising Negative Affects and Maximising Achievement in CS1 Learning. Intelligent Tutoring Systems. 10.1007/978-3-030-80421-3_51. (466-480).

    https://link.springer.com/10.1007/978-3-030-80421-3_51

  • Sakr N, Salama A, Tameesh N and Osman G. (2021). EduPal Leaves No Professor Behind: Supporting Faculty via a Peer-Powered Recommender System. Artificial Intelligence in Education. 10.1007/978-3-030-78270-2_54. (302-307).

    https://link.springer.com/10.1007/978-3-030-78270-2_54

  • Fang X, Sheng Q, Wang X, Zhang W, Ngu A and Yang J. (2020). From Appearance to Essence. ACM Transactions on Intelligent Systems and Technology. 11:6. (1-24). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3411749

  • Banerjee D, Rao K, Sural S and Ganguly N. (2020). BOXREC. ACM Transactions on Intelligent Systems and Technology. 11:6. (1-28). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3408890

  • Eiras-Franco C, Martínez-Rego D, Kanthan L, Piñeiro C, Bahamonde A, Guijarro-Berdiñas B and Alonso-Betanzos A. (2020). Fast Distributed kNN Graph Construction Using Auto-tuned Locality-sensitive Hashing. ACM Transactions on Intelligent Systems and Technology. 11:6. (1-18). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3408889

  • Xia T, Li Y, Feng J, Jin D, Zhang Q, Luo H and Liao Q. (2020). DeepApp. ACM Transactions on Intelligent Systems and Technology. 11:6. (1-12). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3408325

  • Tama B, Comuzzi M and Ko J. (2020). An Empirical Investigation of Different Classifiers, Encoding, and Ensemble Schemes for Next Event Prediction Using Business Process Event Logs. ACM Transactions on Intelligent Systems and Technology. 11:6. (1-34). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3406541

  • Li J, Wu L, Hong R, Zhang K, Ge Y and Li Y. (2020). A Joint Neural Model for User Behavior Prediction on Social Networking Platforms. ACM Transactions on Intelligent Systems and Technology. 11:6. (1-25). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3406540

  • Jan Z and Verma B. (2020). Multiple Elimination of Base Classifiers in Ensemble Learning Using Accuracy and Diversity Comparisons. ACM Transactions on Intelligent Systems and Technology. 11:6. (1-17). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3405790

  • Levy S, Xiong W, Belding E and Wang W. (2020). SafeRoute. ACM Transactions on Intelligent Systems and Technology. 11:6. (1-17). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3402818

  • Zheng Z, Pu J, Liu L, Wang D, Mei X, Zhang S and Dai Q. (2020). Contextual Anomaly Detection in Solder Paste Inspection with Multi-Task Learning. ACM Transactions on Intelligent Systems and Technology. 11:6. (1-17). Online publication date: 31-Dec-2021.

    https://doi.org/10.1145/3383261

  • Kutlimuratov A, Abdusalomov A and Whangbo T. (2020). Evolving Hierarchical and Tag Information via the Deeply Enhanced Weighted Non-Negative Matrix Factorization of Rating Predictions. Symmetry. 10.3390/sym12111930. 12:11. (1930).

    https://www.mdpi.com/2073-8994/12/11/1930

  • Wang Z, Xiao W, Li Y, Chen Z and Jiang Z. LHRM: A LBS Based Heterogeneous Relations Model for User Cold Start Recommendation in Online Travel Platform. Neural Information Processing. (479-490).

    https://doi.org/10.1007/978-3-030-63836-8_40

  • Song B and Li X. The Research and Implementation of Intelligent VLC. Proceedings of the 2020 3rd International Conference on Computational Intelligence and Intelligent Systems. (56-63).

    https://doi.org/10.1145/3440840.3440841

  • Soleymannejad M and Basiri A. (2020). Using OWA Approach to Solve Cold-Start Problem of Recommender Systems 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE). 10.1109/ICCKE50421.2020.9303692. 978-1-7281-8566-8. (500-507).

    https://ieeexplore.ieee.org/document/9303692/

  • Vu A, Hughes J, Pete I, Collier B, Chua Y, Shumailov I and Hutchings A. Turning Up the Dial. Proceedings of the ACM Internet Measurement Conference. (551-566).

    https://doi.org/10.1145/3419394.3423636

  • Tavakoli M, Faraji A, Mol S and Kismihok G. (2020). OER Recommendations to Support Career Development 2020 IEEE Frontiers in Education Conference (FIE). 10.1109/FIE44824.2020.9274175. 978-1-7281-8961-1. (1-5).

    https://ieeexplore.ieee.org/document/9274175/

  • Candello H, Pichiliani M, Pinhanez C, Vidon S and Wessel M. Co-designing a conversational interactive exhibit for children. Proceedings of the 2020 ACM Interaction Design and Children Conference: Extended Abstracts. (326-331).

    https://doi.org/10.1145/3397617.3397840

  • Timmaraju A, Liu A and Tripathi P. (2020). Addressing Challenges in Building Web-Scale Content Classification Systems ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 10.1109/ICASSP40776.2020.9054158. 978-1-5090-6631-5. (8134-8138).

    https://ieeexplore.ieee.org/document/9054158/

  • Al-Sabaawi A, Karacan H, Yenice Y and Kodaz H. (2020). Exploiting implicit social relationships via dimension reduction to improve recommendation system performance. PLOS ONE. 10.1371/journal.pone.0231457. 15:4. (e0231457).

    https://dx.plos.org/10.1371/journal.pone.0231457

  • R K, Kumar P and Bhasker B. (2020). DNNRec. Expert Systems with Applications: An International Journal. 144:C. Online publication date: 15-Apr-2020.

    https://doi.org/10.1016/j.eswa.2019.113054

  • Manju G. , Abhinaya P. , Hemalatha M.R. , Manju Ganesh G. and Manju G.G. . Cold Start Problem Alleviation in a Research Paper Recommendation System Using the Random Walk Approach on a Heterogeneous User-Paper Graph. International Journal of Intelligent Information Technologies. 10.4018/IJIIT.2020040102. 16:2. (24-48).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJIIT.2020040102

  • Jo J, Lee S, Lee C, Lee D and Lim H. (2020). Development of Fashion Product Retrieval and Recommendations Model Based on Deep Learning. Electronics. 10.3390/electronics9030508. 9:3. (508).

    https://www.mdpi.com/2079-9292/9/3/508

  • Kłopotek R. (2020). Modeling Bimodal Social Networks Subject to the Recommendation with the Cold Start User-Item Model. Computers. 10.3390/computers9010011. 9:1. (11).

    https://www.mdpi.com/2073-431X/9/1/11

  • Xu D, Ruan C, Cho J, Korpeoglu E, Kumar S and Achan K. Knowledge-aware Complementary Product Representation Learning. Proceedings of the 13th International Conference on Web Search and Data Mining. (681-689).

    https://doi.org/10.1145/3336191.3371854

  • Rodríguez-Pardo C, Patricio M, Berlanga A and Molina J. (2020). Machine Learning for Smart Tourism and Retail. Handbook of Research on Big Data Clustering and Machine Learning. 10.4018/978-1-7998-0106-1.ch014. (311-333).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-0106-1.ch014

  • Jiang D, Liu Z, Zheng L and Chen J. Factorization Meets Neural Networks: A Scalable and Efficient Recommender for Solving the New User Problem. IEEE Access. 10.1109/ACCESS.2020.2968297. 8. (18350-18361).

    https://ieeexplore.ieee.org/document/8964337/

  • Li Z, Xiong F, Wang X, Guan Z and Chen H. Mining Heterogeneous Influence and Indirect Trust for Recommendation. IEEE Access. 10.1109/ACCESS.2020.2968102. 8. (21282-21290).

    https://ieeexplore.ieee.org/document/8963971/

  • El Kouni I, Karoui W and Romdhane L. (2020). PRUCARS: improved association rule-based social recommender systems using overlapping community detection. Procedia Computer Science. 10.1016/j.procs.2020.09.091. 176. (956-965).

    https://linkinghub.elsevier.com/retrieve/pii/S187705092031989X

  • Verma V and Aggarwal R. (2020). Neighborhood-Based Collaborative Recommendations: An Introduction. Applications of Machine Learning. 10.1007/978-981-15-3357-0_7. (91-110).

    http://link.springer.com/10.1007/978-981-15-3357-0_7

  • Wishwanath C, Weerasinghe S, Illandara K, Kadigamuwa A and Ahangama S. (2020). A Personalized and Context Aware Music Recommendation System. Social Computing and Social Media. Participation, User Experience, Consumer Experience, and Applications of Social Computing. 10.1007/978-3-030-49576-3_45. (616-627).

    http://link.springer.com/10.1007/978-3-030-49576-3_45

  • Drakopoulos G, Giannoukou I, Mylonas P and Sioutas S. (2020). The Converging Triangle of Cultural Content, Cognitive Science, and Behavioral Economics. Artificial Intelligence Applications and Innovations. AIAI 2020 IFIP WG 12.5 International Workshops. 10.1007/978-3-030-49190-1_18. (200-212).

    https://link.springer.com/10.1007/978-3-030-49190-1_18

  • da Silva G, Durão F and Capretz M. PLDSD. Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services. (294-303).

    https://doi.org/10.1145/3366030.3366041

  • Luna-Perejon F, Malwade S, Styliadis C, Civit J, Cascado-Caballero D, Konstantinidis E, Abdul S, Bamidis P, Civit A and Li Y. (2019). Evaluation of user satisfaction and usability of a mobile app for smoking cessation. Computer Methods and Programs in Biomedicine. 182:C. Online publication date: 1-Dec-2019.

    https://doi.org/10.1016/j.cmpb.2019.105042

  • Neve J and Palomares I. (2019). Aggregation Strategies in User-to-User Reciprocal Recommender Systems 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). 10.1109/SMC.2019.8914362. 978-1-7281-4569-3. (4031-4036).

    https://ieeexplore.ieee.org/document/8914362/

  • Neve J and Palomares I. Latent factor models and aggregation operators for collaborative filtering in reciprocal recommender systems. Proceedings of the 13th ACM Conference on Recommender Systems. (219-227).

    https://doi.org/10.1145/3298689.3347026

  • Bharadhwaj H. (2019). Meta-Learning for User Cold-Start Recommendation 2019 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2019.8852100. 978-1-7281-1985-4. (1-8).

    https://ieeexplore.ieee.org/document/8852100/

  • Maleček L, Balcar Š and Peška L. LODBookRec. Proceedings of the 9th International Conference on Web Intelligence, Mining and Semantics. (1-6).

    https://doi.org/10.1145/3326467.3326476

  • Sinha B and Dhanalakshmi R. (2019). Evolution of recommender system over the time. Soft Computing. 10.1007/s00500-019-04143-8.

    http://link.springer.com/10.1007/s00500-019-04143-8

  • Osadchiy T, Poliakov I, Olivier P, Rowland M and Foster E. Validation of a recommender system for prompting omitted foods in online dietary assessment surveys. Proceedings of the 13th EAI International Conference on Pervasive Computing Technologies for Healthcare. (208-215).

    https://doi.org/10.1145/3329189.3329191

  • Guerraoui R, Kermarrec A, Ruas O and Taiani F. (2019). Fingerprinting Big Data: The Case of KNN Graph Construction 2019 IEEE 35th International Conference on Data Engineering (ICDE). 10.1109/ICDE.2019.00186. 978-1-5386-7474-1. (1738-1741).

    https://ieeexplore.ieee.org/document/8731479/

  • Zhao Q, Zhang Y, Ma J and Duan Q. (2018). Factored Item Similarity and Bayesian Personalized Ranking for Recommendation with Implicit Feedback. Arabian Journal for Science and Engineering. 10.1007/s13369-018-3358-0. 44:4. (2973-2983). Online publication date: 1-Apr-2019.

    http://link.springer.com/10.1007/s13369-018-3358-0

  • Alabduljabbar R and Al-Dossari H. A Dynamic Selection Approach for Quality Control Mechanisms in Crowdsourcing. IEEE Access. 10.1109/ACCESS.2019.2906506. 7. (38644-38656).

    https://ieeexplore.ieee.org/document/8672075/

  • Revathy V and Anitha S. (2019). Cold Start Problem in Social Recommender Systems: State-of-the-Art Review. Advances in Computer Communication and Computational Sciences. 10.1007/978-981-13-0341-8_10. (105-115).

    http://link.springer.com/10.1007/978-981-13-0341-8_10

  • Kłopotek R. (2019). Modeling Bimodal Social Networks Subject to Recommendation. Information and Software Technologies. 10.1007/978-3-030-30275-7_10. (121-135).

    http://link.springer.com/10.1007/978-3-030-30275-7_10

  • Yi F, Yu Z, Xu H and Guo B. (2019). Talents Recommendation with Multi-Aspect Preference Learning. Green, Pervasive, and Cloud Computing. 10.1007/978-3-030-15093-8_29. (409-423).

    http://link.springer.com/10.1007/978-3-030-15093-8_29

  • Qiao R, Yan S and Shen B. (2018). A Reinforcement Learning Solution to Cold-Start Problem in Software Crowdsourcing Recommendations 2018 IEEE International Conference on Progress in Informatics and Computing (PIC). 10.1109/PIC.2018.8706279. 978-1-5386-7672-1. (8-14).

    https://ieeexplore.ieee.org/document/8706279/

  • Riyana S and Natwichai J. (2018). Privacy preservation for recommendation databases. Service Oriented Computing and Applications. 12:3-4. (259-273). Online publication date: 1-Dec-2018.

    https://doi.org/10.1007/s11761-018-0248-y

  • Yu J, Gao M, Li J, Yin H and Liu H. Adaptive Implicit Friends Identification over Heterogeneous Network for Social Recommendation. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. (357-366).

    https://doi.org/10.1145/3269206.3271725

  • Duricic T, Lacic E, Kowald D and Lex E. Trust-based collaborative filtering. Proceedings of the 12th ACM Conference on Recommender Systems. (446-450).

    https://doi.org/10.1145/3240323.3240404

  • Rostami M, Huber D and Lu T. A crowdsourcing triage algorithm for geopolitical event forecasting. Proceedings of the 12th ACM Conference on Recommender Systems. (377-381).

    https://doi.org/10.1145/3240323.3240385

  • Yardim A, Kristof V, Maystre L and Grossglauser M. Can Who-Edits-What Predict Edit Survival?. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (2604-2613).

    https://doi.org/10.1145/3219819.3219979

  • Moses J and Babu L. (2018). Evaluating Prediction Accuracy, Developmental Challenges, and Issues of Recommender Systems. International Journal of Web Portals. 10:2. (61-79). Online publication date: 1-Jul-2018.

    https://doi.org/10.4018/IJWP.2018070105

  • da Silva J, de Moura Junior N and Caloba L. (2018). Effects of Data Sparsity on Recommender Systems based on Collaborative Filtering 2018 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2018.8489095. 978-1-5090-6014-6. (1-8).

    https://ieeexplore.ieee.org/document/8489095/

  • Ivaşcu T, Diniş A and Cincar K. A Disease-driven Nutrition Recommender System based on a Multi-agent Architecture. Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics. (1-5).

    https://doi.org/10.1145/3227609.3227685

  • Hook J. Facts, Interactivity and Videotape. Proceedings of the 2018 ACM International Conference on Interactive Experiences for TV and Online Video. (43-55).

    https://doi.org/10.1145/3210825.3210826

  • Tahmasebi M, Ghazvini F and Esmaeili M. (2018). Implementation and evaluation of a resource-based learning recommender based on learning style and web page features. Journal of Web Engineering. 17:3-4. (284-304). Online publication date: 1-Jun-2018.

    /doi/10.5555/3370055.3370062

  • Dharia S, Eirinaki M, Jain V, Patel J, Varlamis I, Vora J and Yamauchi R. (2018). Social recommendations for personalized fitness assistance. Personal and Ubiquitous Computing. 22:2. (245-257). Online publication date: 1-Apr-2018.

    https://doi.org/10.1007/s00779-017-1039-8

  • Wang J and Kawagoe K. A Recommender System for Ancient Books, Pamphlets and Paintings in Ritsumeikan Art Research Center Database. Proceedings of the 2018 10th International Conference on Computer and Automation Engineering. (53-57).

    https://doi.org/10.1145/3192975.3193018

  • Guo B, Li J, Zheng V, Wang Z and Yu Z. (2018). CityTransfer. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 1:4. (1-23). Online publication date: 8-Jan-2018.

    https://doi.org/10.1145/3161411

  • Banovic N and Krumm J. (2018). Warming Up to Cold Start Personalization. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 1:4. (1-13). Online publication date: 8-Jan-2018.

    https://doi.org/10.1145/3161175

  • Yu M, Zhang X, Lee D and Kreager D. (2018). Community-Based Recommendation for Cold-Start Problem: A Case Study of Reciprocal Online Dating Recommendation. Social Network Based Big Data Analysis and Applications. 10.1007/978-3-319-78196-9_10. (201-222).

    http://link.springer.com/10.1007/978-3-319-78196-9_10

  • Boratto L, Carta S, Fenu G and Piras L. (2018). Employing Document Embeddings to Solve the “New Catalog” Problem in User Targeting, and Provide Explanations to the Users. Advances in Information Retrieval. 10.1007/978-3-319-76941-7_28. (371-382).

    http://link.springer.com/10.1007/978-3-319-76941-7_28

  • Jorro-Aragoneses J, Jimenez-Díaz G, Recio-García J and Díaz-Agudo B. (2018). Case Base Elicitation for a Context-Aware Recommender System. Case-Based Reasoning Research and Development. 10.1007/978-3-030-01081-2_12. (170-185).

    http://link.springer.com/10.1007/978-3-030-01081-2_12

  • Vartak M, Thiagarajan A, Miranda C, Bratman J and Larochelle H. A meta-learning perspective on cold-start recommendations for items. Proceedings of the 31st International Conference on Neural Information Processing Systems. (6907-6917).

    /doi/10.5555/3295222.3295434

  • Li J, Lu K, Huang Z and Shen H. Two Birds One Stone. Proceedings of the 25th ACM international conference on Multimedia. (898-906).

    https://doi.org/10.1145/3123266.3123316

  • Woloszyn V, dos Santos H, Wives L and Becker K. MRR. Proceedings of the International Conference on Web Intelligence. (877-883).

    https://doi.org/10.1145/3106426.3106444

  • Choetkiertikul M, Dam H, Tran T and Ghose A. (2017). Predicting the delay of issues with due dates in software projects. Empirical Software Engineering. 22:3. (1223-1263). Online publication date: 1-Jun-2017.

    https://doi.org/10.1007/s10664-016-9496-7

  • Majumdar A and Jain A. (2017). Cold-start, warm-start and everything in between: An autoencoder based approach to recommendation 2017 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2017.7966316. 978-1-5090-6182-2. (3656-3663).

    http://ieeexplore.ieee.org/document/7966316/

  • Gao Q, Gao L, Fan J and Ren J. (2017). A preference elicitation method based on bipartite graphical correlation and implicit trust. Neurocomputing. 10.1016/j.neucom.2016.09.026. 237. (92-100). Online publication date: 1-May-2017.

    https://linkinghub.elsevier.com/retrieve/pii/S0925231216310438

  • Beutel A, Chi E, Cheng Z, Pham H and Anderson J. Beyond Globally Optimal. Proceedings of the 26th International Conference on World Wide Web. (203-212).

    https://doi.org/10.1145/3038912.3052713

  • Shi F and Ghedira C. Improving recommender systems with an intention-based algorithm switching strategy. Proceedings of the Symposium on Applied Computing. (1668-1673).

    https://doi.org/10.1145/3019612.3019761

  • Aleksandrova M, Brun A, Boyer A and Chertov O. (2017). Identifying representative users in matrix factorization-based recommender systems. Journal of Intelligent Information Systems. 48:2. (365-397). Online publication date: 1-Apr-2017.

    https://doi.org/10.1007/s10844-016-0418-3

  • Ahmed F and Fuge M. Capturing Winning Ideas in Online Design Communities. Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. (1675-1687).

    https://doi.org/10.1145/2998181.2998249

  • ZHAO Y, GAO S, GALLINARI P and GUO J. (2017). Zero-Shot Embedding for Unseen Entities in Knowledge Graph. IEICE Transactions on Information and Systems. 10.1587/transinf.2016EDP7446. E100.D:7. (1440-1447).

    https://www.jstage.jst.go.jp/article/transinf/E100.D/7/E100.D_2016EDP7446/_article

  • Cao X and Yu Y. (2017). Joint User Modeling Across Aligned Heterogeneous Sites Using Neural Networks. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-319-71249-9_48. (799-815).

    https://link.springer.com/10.1007/978-3-319-71249-9_48

  • Thanh-Tai H and Thai-Nghe N. (2017). A Semantic-Based Recommendation Approach for Cold-Start Problem. Future Data and Security Engineering. 10.1007/978-3-319-70004-5_31. (433-443).

    http://link.springer.com/10.1007/978-3-319-70004-5_31

  • Bahri L, Carminati B and Ferrari E. (2016). COIP—Continuous, Operable, Impartial, and Privacy-Aware Identity Validity Estimation for OSN Profiles. ACM Transactions on the Web. 10:4. (1-41). Online publication date: 27-Dec-2016.

    https://doi.org/10.1145/3014338

  • Zhang H, Chow T and Wu Q. Organizing Books and Authors by Multilayer SOM. IEEE Transactions on Neural Networks and Learning Systems. 10.1109/TNNLS.2015.2496281. 27:12. (2537-2550).

    http://ieeexplore.ieee.org/document/7328760/

  • Dibie O and Sumner T. (2016). Using weak ties to understand the resource usage and sharing patterns of a professional learning community. Social Network Analysis and Mining. 10.1007/s13278-016-0335-z. 6:1. Online publication date: 1-Dec-2016.

    http://link.springer.com/10.1007/s13278-016-0335-z

  • Gohari F and Tarokh M. (2016). New Recommender Framework. Computational Intelligence. 32:4. (561-586). Online publication date: 1-Nov-2016.

    https://doi.org/10.1111/coin.12066

  • Shahmohammadi A, Khadangi E and Bagheri A. (2016). Presenting new collaborative link prediction methods for activity recommendation in Facebook. Neurocomputing. 210:C. (217-226). Online publication date: 19-Oct-2016.

    https://doi.org/10.1016/j.neucom.2016.06.024

  • Alabduljabbar R and Al-Dossari H. A Task Ontology-based Model for Quality Control in Crowdsourcing Systems. Proceedings of the International Conference on Research in Adaptive and Convergent Systems. (22-28).

    https://doi.org/10.1145/2987386.2987413

  • Cao X and Yu Y. Joint User Modeling across Aligned Heterogeneous Sites. Proceedings of the 10th ACM Conference on Recommender Systems. (83-90).

    https://doi.org/10.1145/2959100.2959155

  • Meng J, Zheng Z, Tao G and Liu X. (2016). User-Specific Rating Prediction for Mobile Applications via Weight-Based Matrix Factorization 2016 IEEE International Conference on Web Services (ICWS). 10.1109/ICWS.2016.104. 978-1-5090-2675-3. (728-731).

    http://ieeexplore.ieee.org/document/7558079/

  • Son L. (2016). Dealing with the new user cold-start problem in recommender systems: A comparative review. Information Systems. 10.1016/j.is.2014.10.001. 58. (87-104). Online publication date: 1-Jun-2016.

    https://linkinghub.elsevier.com/retrieve/pii/S0306437914001525

  • Saari P, Fazekas G, Eerola T, Barthet M, Lartillot O and Sandler M. (2016). Genre-Adaptive Semantic Computing and Audio-Based Modelling for Music Mood Annotation. IEEE Transactions on Affective Computing. 7:2. (122-135). Online publication date: 1-Apr-2016.

    https://doi.org/10.1109/TAFFC.2015.2462841

  • Sarumathi M, Singarani S, Thameemaa S, Umayal V, Archana S, Indira K and Devi M. (2016). Systematic approach for cold start issues in recommendations system 2016 Fifth International Conference on Recent Trends in Information Technology (ICRTIT). 10.1109/ICRTIT.2016.7569601. 978-1-4673-9802-2. (1-7).

    http://ieeexplore.ieee.org/document/7569601/

  • Feil S, Kretzer M, Werder K and Maedche A. Using Gamification to Tackle the Cold-Start Problem in Recommender Systems. Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion. (253-256).

    https://doi.org/10.1145/2818052.2869079

  • Zhang H, Ji Y, Li J and Ye Y. A Triple Wing Harmonium Model for Movie Recommendation. IEEE Transactions on Industrial Informatics. 10.1109/TII.2015.2475218. 12:1. (231-239).

    https://ieeexplore.ieee.org/document/7230268/

  • Li L, Xu J, Xiao W, Hu S and Tong H. (2016). Exploiting External Knowledge and Entity Relationship for Entity Search. Natural Language Understanding and Intelligent Applications. 10.1007/978-3-319-50496-4_62. (689-700).

    http://link.springer.com/10.1007/978-3-319-50496-4_62

  • Stockleben B and Lugmayr A. (2016). The Impact of Fluid Publishing on Media Information Management—A Survey of Latest Journalistic Trends as Data-Driven Journalism, Journalism as Process and Metrics-Driven Journalism. Information Systems and Management in Media and Entertainment Industries. 10.1007/978-3-319-49407-4_15. (299-318).

    http://link.springer.com/10.1007/978-3-319-49407-4_15

  • Petrova A and Rudolph S. (2016). Web-Mining Defeasible Knowledge from Concessional Statements. Graph-Based Representation and Reasoning. 10.1007/978-3-319-40985-6_15. (191-203).

    http://link.springer.com/10.1007/978-3-319-40985-6_15

  • Shi J, Li J, Lu H and Zhang Y. Predicting Drug-Target Interactions Between New Drugs and New Targets via Pairwise K-nearest Neighbor and Automatic Similarity Selection. Revised Selected Papers, Part II, of the 5th International Conference on Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques - Volume 9243. (477-486).

    https://doi.org/10.1007/978-3-319-23862-3_47

  • Luo C, He T, Zhang X and Zhou Z. (2015). Learning Forum Posts Topic Discovery and Its Application in Recommendation System. Journal of Software. 10.17706/jsw.10.4.392-402. 10:4. (392-402). Online publication date: 1-Apr-2015.

    http://www.jsoftware.us/index.php?m=content&c=index&a=show&catid=151&id=2313

  • Chen X, Liu Z and Sun M. (2015). Estimating translation probabilities for social tag suggestion. Expert Systems with Applications: An International Journal. 42:4. (1950-1959). Online publication date: 1-Mar-2015.

    https://doi.org/10.1016/j.eswa.2014.10.002

  • Rosli A, You T, Ha I, Chung K and Jo G. (2015). Alleviating the cold-start problem by incorporating movies facebook pages. Cluster Computing. 18:1. (187-197). Online publication date: 1-Mar-2015.

    https://doi.org/10.1007/s10586-014-0355-2

  • Song F, Chen H and Fu Y. (2015). An Approach to Rapid Worker Discovery in Software Crowdsourcing. Algorithms and Architectures for Parallel Processing. 10.1007/978-3-319-27119-4_26. (370-382).

    http://link.springer.com/10.1007/978-3-319-27119-4_26

  • Petrovic G and Fujita H. (2015). Semi-automatic Detection of Sentiment Hashtags in Social Networks. Intelligent Software Methodologies, Tools and Techniques. 10.1007/978-3-319-22689-7_16. (216-224).

    https://link.springer.com/10.1007/978-3-319-22689-7_16

  • Song W, Guo Q and Liu J. (2014). Improved hybrid information filtering based on limited time window. Physica A: Statistical Mechanics and its Applications. 10.1016/j.physa.2014.08.008. 416. (192-197). Online publication date: 1-Dec-2014.

    https://linkinghub.elsevier.com/retrieve/pii/S0378437114006864

  • Braunhofer M. Hybridisation techniques for cold-starting context-aware recommender systems. Proceedings of the 8th ACM Conference on Recommender systems. (405-408).

    https://doi.org/10.1145/2645710.2653360

  • Krauss C, Braun S and Arbanowski S. Preference Ontologies based on Social Media for compensating the Cold Start Problem. Proceedings of the 8th Workshop on Social Network Mining and Analysis. (1-4).

    https://doi.org/10.1145/2659480.2659504

  • Miranda B and Bertolino A. Social coverage for customized test adequacy and selection criteria. Proceedings of the 9th International Workshop on Automation of Software Test. (22-28).

    https://doi.org/10.1145/2593501.2593505

  • Lika B, Kolomvatsos K and Hadjiefthymiades S. (2014). Facing the cold start problem in recommender systems. Expert Systems with Applications: An International Journal. 41:4. (2065-2073). Online publication date: 1-Mar-2014.

    https://doi.org/10.1016/j.eswa.2013.09.005

  • Rohani V, Kasirun Z, Kumar S, Shamshirband S and Weber G. (2014). An Effective Recommender Algorithm for Cold‐Start Problem in Academic Social Networks. Mathematical Problems in Engineering. 10.1155/2014/123726. 2014:1. Online publication date: 1-Jan-2014.

    https://onlinelibrary.wiley.com/doi/10.1155/2014/123726

  • Nguyen H and Kofod-Petersen A. (2014). Using Multi-armed Bandit to Solve Cold-Start Problems in Recommender Systems at Telco. Mining Intelligence and Knowledge Exploration. 10.1007/978-3-319-13817-6_3. (21-30).

    http://link.springer.com/10.1007/978-3-319-13817-6_3

  • Carminati B, Ferrari E and Viviani M. (2013). Security and Trust in Online Social Networks. Synthesis Lectures on Information Security, Privacy, and Trust. 10.2200/S00549ED1V01Y201311SPT008. 4:3. (1-120). Online publication date: 26-Dec-2013.

    http://www.morganclaypool.com/doi/abs/10.2200/S00549ED1V01Y201311SPT008

  • Albanese M, d’Acierno A, Moscato V, Persia F and Picariello A. (2013). A Multimedia Recommender System. ACM Transactions on Internet Technology. 13:1. (1-32). Online publication date: 1-Nov-2013.

    https://doi.org/10.1145/2532640

  • Qiu T, Zhang Z, Chen G and Roccatano D. (2013). Information Filtering via a Scaling-Based Function. PLoS ONE. 10.1371/journal.pone.0063531. 8:5. (e63531).

    https://dx.plos.org/10.1371/journal.pone.0063531

  • Formoso V, FernáNdez D, Cacheda F and Carneiro V. (2013). Using profile expansion techniques to alleviate the new user problem. Information Processing and Management: an International Journal. 49:3. (659-672). Online publication date: 1-May-2013.

    https://doi.org/10.1016/j.ipm.2012.07.005

  • Albanese M, d’Acierno A, Moscato V, Persia F and Picariello A. A Novel Strategy for Recommending Multimedia Objects and its Application in the Cultural Heritage Domain. Multimedia Data Engineering Applications and Processing. 10.4018/978-1-4666-2940-0.ch015. (274-290).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-2940-0.ch015

  • Wang Y, Uzun A, Bareth U and Küpper A. (2013). Tracommender – Exploiting Continuous Background Tracking Information on Smartphones for Location-Based Recommendations. Mobile Wireless Middleware, Operating Systems, and Applications. 10.1007/978-3-642-36660-4_18. (250-263).

    http://link.springer.com/10.1007/978-3-642-36660-4_18

  • Amato F, Mazzeo A, Moscato V and Picariello A. (2013). A Recommendation System for Browsing of Multimedia Collections in the Internet of Things. Internet of Things and Inter-cooperative Computational Technologies for Collective Intelligence. 10.1007/978-3-642-34952-2_16. (391-411).

    http://link.springer.com/10.1007/978-3-642-34952-2_16

  • Amato F, Chianese A, Moscato V, Picariello A and Sperli G. SNOPS. Proceedings of the twelfth international workshop on Web information and data management. (49-56).

    https://doi.org/10.1145/2389936.2389947

  • Lü L, Medo M, Yeung C, Zhang Y, Zhang Z and Zhou T. (2012). Recommender systems. Physics Reports. 10.1016/j.physrep.2012.02.006. 519:1. (1-49). Online publication date: 1-Oct-2012.

    http://linkinghub.elsevier.com/retrieve/pii/S0370157312000828

  • Liu Q, Xiang B, Chen E, Ge Y, Xiong H, Bao T and Zheng Y. Influential seed items recommendation. Proceedings of the sixth ACM conference on Recommender systems. (245-248).

    https://doi.org/10.1145/2365952.2366005

  • Levi A, Mokryn O, Diot C and Taft N. Finding a needle in a haystack of reviews. Proceedings of the sixth ACM conference on Recommender systems. (115-122).

    https://doi.org/10.1145/2365952.2365977

  • Carrer-Neto W, Hernández-Alcaraz M, Valencia-García R and García-Sánchez F. (2012). Social knowledge-based recommender system. Application to the movies domain. Expert Systems with Applications: An International Journal. 39:12. (10990-11000). Online publication date: 1-Sep-2012.

    https://doi.org/10.1016/j.eswa.2012.03.025

  • Goyal A and Lakshmanan L. RecMax. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. (1294-1302).

    https://doi.org/10.1145/2339530.2339731

  • Adomavicius G and Zhang J. (2012). Impact of data characteristics on recommender systems performance. ACM Transactions on Management Information Systems. 3:1. (1-17). Online publication date: 1-Apr-2012.

    https://doi.org/10.1145/2151163.2151166

  • Bobadilla J, Ortega F, Hernando A and Bernal J. (2012). A collaborative filtering approach to mitigate the new user cold start problem. Knowledge-Based Systems. 26. (225-238). Online publication date: 1-Feb-2012.

    https://doi.org/10.1016/j.knosys.2011.07.021

  • Giannikopoulos P, Varlamis I and Eirinaki M. Mining Frequent Generalized Patterns for Web Personalization in the Presence of Taxonomies. Exploring Advances in Interdisciplinary Data Mining and Analytics. 10.4018/978-1-61350-474-1.ch004. (52-68).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-61350-474-1.ch004

  • Cheng W, Kasneci G, Graepel T, Stern D and Herbrich R. Automated feature generation from structured knowledge. Proceedings of the 20th ACM international conference on Information and knowledge management. (1395-1404).

    https://doi.org/10.1145/2063576.2063779

  • Anand S and Griffiths N. A market-based approach to address the new item problem. Proceedings of the fifth ACM conference on Recommender systems. (205-212).

    https://doi.org/10.1145/2043932.2043970

  • Albanese M, d'Acierno A, Moscato V, Persia F and Picariello A. (2011). A Novel Strategy for Recommending Multimedia Objects and its Application in the Cultural Heritage Domain. International Journal of Multimedia Data Engineering & Management. 2:4. (1-18). Online publication date: 1-Oct-2011.

    https://doi.org/10.4018/jmdem.2011100101

  • Zanardi V and Capra L. A scalable tag-based recommender system for new users of the social web. Proceedings of the 22nd international conference on Database and expert systems applications - Volume Part I. (542-557).

    /doi/10.5555/2035368.2035419

  • Albanese M, Chianese A, D'Acierno A, Moscato V and Picariello A. (2010). A multimedia recommender integrating object features and user behavior. Multimedia Tools and Applications. 50:3. (563-585). Online publication date: 1-Dec-2010.

    https://doi.org/10.1007/s11042-010-0480-8

  • Yang R, Zheng S and Cao T. (2010). H.264 Based Multiple Description Video Coding for Internet Streaming 2010 International Conference on Multimedia Technology (ICMT). 10.1109/ICMULT.2010.5630989. 978-1-4244-7871-2. (1-4).

    http://ieeexplore.ieee.org/document/5630989/

  • Ahn J and Amatriain X. Towards Fully Distributed and Privacy-Preserving Recommendations via Expert Collaborative Filtering and RESTful Linked Data. Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 01. (66-73).

    https://doi.org/10.1109/WI-IAT.2010.53

  • Ciordas C and Doumen J. An Evaluation Framework for Content Recommender Systems The Industry Perspective. Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 03. (273-277).

    https://doi.org/10.1109/WI-IAT.2010.279

  • Albanese M, d'Acierno A, Moscato V, Persia F and Picariello A. A ranking method for multimedia recommenders. Proceedings of the ACM International Conference on Image and Video Retrieval. (311-318).

    https://doi.org/10.1145/1816041.1816087

  • Duan L, Zhang X, Yang Y and Xu G. Study on Zero CO2 Emission SOFC Hybrid Power System with Steam Injection. Proceedings of the 2010 International Conference on Electrical and Control Engineering. (4338-4341).

    https://doi.org/10.1109/iCECE.2010.1054

  • Giannikopoulos P, Varlamis I and Eirinaki M. (2010). Mining Frequent Generalized Patterns for Web Personalization in the Presence of Taxonomies. International Journal of Data Warehousing and Mining. 6:1. (58-76). Online publication date: 1-Jan-2010.

    https://doi.org/10.4018/jdwm.2010090804

  • Shapira B, Shoval P, Tractinsky N and Meyer J. (2009). ePaper : A personalized mobile newspaper . Journal of the American Society for Information Science and Technology. 10.1002/asi.21172. 60:11. (2333-2346). Online publication date: 1-Nov-2009.

    https://onlinelibrary.wiley.com/doi/10.1002/asi.21172

  • Zhen Y, Li W and Yeung D. TagiCoFi. Proceedings of the third ACM conference on Recommender systems. (69-76).

    https://doi.org/10.1145/1639714.1639727

  • Amatriain X, Lathia N, Pujol J, Kwak H and Oliver N. The wisdom of the few. Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval. (532-539).

    https://doi.org/10.1145/1571941.1572033

  • Stern D, Herbrich R and Graepel T. Matchbox. Proceedings of the 18th international conference on World wide web. (111-120).

    https://doi.org/10.1145/1526709.1526725

  • Kim H and Ghiasi B. Online Serendipity: The Case for Curated Recommender Systems. SSRN Electronic Journal. 10.2139/ssrn.2798347.

    http://www.ssrn.com/abstract=2798347