Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3038912.3052713acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Beyond Globally Optimal: Focused Learning for Improved Recommendations

Published: 03 April 2017 Publication History

Abstract

When building a recommender system, how can we ensure that all items are modeled well? Classically, recommender systems are built, optimized, and tuned to improve a global prediction objective, such as root mean squared error. However, as we demonstrate, these recommender systems often leave many items badly-modeled and thus under-served. Further, we give both empirical and theoretical evidence that no single matrix factorization, under current state-of-the-art methods, gives optimal results for each item.
As a result, we ask: how can we learn additional models to improve the recommendation quality for a specified subset of items? We offer a new technique called focused learning, based on hyperparameter optimization and a customized matrix factorization objective. Applying focused learning on top of weighted matrix factorization, factorization machines, and LLORMA, we demonstrate prediction accuracy improvements on multiple datasets. For instance, on MovieLens we achieve as much as a 17% improvement in prediction accuracy for niche movies, cold-start items, and even the most badly-modeled items in the original model.

References

[1]
L. A. Adamic and B. A. Huberman. Power-law distribution of the world wide web. Science, 287(5461):2115--2115, 2000.
[2]
M. Aharon, O. Anava, N. Avigdor-Elgrabli, D. Drachsler-Cohen, S. Golan, and O. Somekh. ExcUseMe: Asking users to help in item cold-start recommendations. In RecSys. ACM, 2015.
[3]
O. Anava, S. Golan, N. Golbandi, Z. Karnin, R. Lempel, O. Rokhlenko, and O. Somekh. Budget-constrained item cold-start handling in collaborative filtering recommenders via optimal design. In WWW, pages 45--54, 2015.
[4]
I. Barjasteh, R. Forsati, F. Masrour, A.-H. Esfahanian, and H. Radha. Cold-start item and user recommendation with decoupled completion and transduction. In RecSys, 2015.
[5]
J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In NIPS, pages 2546--2554, 2011.
[6]
A. Beutel, A. Ahmed, and A. J. Smola. ACCAMS: Additive Co-Clustering to Approximate Matrices Succinctly. In WWW, 2015.
[7]
A. Beutel, K. Murray, C. Faloutsos, and A. J. Smola. CoBaFi: Collaborative Bayesian Filtering. In WWW, pages 97--108, 2014.
[8]
L. Breiman and J. H. Friedman. Estimating optimal transformations for multiple regression and correlation. JASA, 80(391):580--598, 1985.
[9]
E. Brochu, V. Cora, and N. De Freitas. A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599, 2010.
[10]
E. Christakopoulou and G. Karypis. Local item-item models for top-n recommendation. In RecSys, 2016.
[11]
Q. Diao, M. Qiu, C.-Y. Wu, A. J. Smola, J. Jiang, and C. Wang. Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS). In KDD, pages 193--202. ACM, 2014.
[12]
M. Dredze, K. Crammer, and F. Pereira. Confidence weighted linear classification. In ICML. ACM, 2008.
[13]
A. M. Elkahky, Y. Song, and X. He. A multi-view deep learning approach for cross domain user modeling in recommendation systems. In WWW. ACM, 2015.
[14]
M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topology. In SIGCOMM, pages 251--262, 1999.
[15]
P. Hamel. To have a tiger by the tail: Improving music recommendation for international users. In ICML workshop, 2015.
[16]
L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu. Personalized recommendation via cross-domain triadic factorization. In WWW. ACM, 2013.
[17]
Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, 2008.
[18]
Y. Koren. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In KDD, pages 426--434, New York, NY, USA, 2008.
[19]
Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30--37, 2009.
[20]
X. N. Lam, T. Vu, T. D. Le, and A. D. Duong. Addressing cold-start problem in recommendation systems. In IMCOM, pages 208--211. ACM, 2008.
[21]
J. Lee, S. Kim, G. Lebanon, and Y. Singer. Local low-rank matrix approximation. In ICML, 2013.
[22]
J. Lee, M. Sun, and G. Lebanon. PREA: Personalized recommendation algorithms toolkit. JMLR, 13(Sep), 2012.
[23]
H. Ma, H. Yang, M. R. Lyu, and I. King. SoRec: social recommendation using probabilistic matrix factorization. In CIKM, pages 931--940. ACM, 2008.
[24]
L. Mason, J. Baxter, P. L. Bartlett, and M. R. Frean. Boosting algorithms as gradient descent. NIPS, 2000.
[25]
J. McAuley and J. Leskovec. Hidden factors and hidden topics: understanding rating dimensions with review text. In RecSys, pages 165--172. ACM, 2013.
[26]
M. Mitzenmacher. A brief history of generative models for power law and lognormal distributions. Internet mathematics, 1(2):226--251, 2004.
[27]
Y. J. Park and A. Tuzhilin. The long tail of recommender systems and how to leverage it. In RecSys, pages 11--18. ACM, 2008.
[28]
S. Rendle. Factorization machines with libFM. ACM TIST, 3(3):57:1--57:22, May 2012.
[29]
J. Riedl and J. Konstan. Movielens dataset, 1998.
[30]
Y. Rong, X. Wen, and H. Cheng. A monte carlo algorithm for cold start recommendation. In WWW, pages 327--336. ACM, 2014.
[31]
S. Sahebi and P. Brusilovsky. It takes two to tango: An exploration of domain pairs for cross-domain collaborative filtering. In RecSys. ACM, 2015.
[32]
R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In ICML, pages 880--887. ACM, 2008.
[33]
M. Saveski and A. Mantrach. Item cold-start recommendations: learning local collective embeddings. In RecSys. ACM, 2014.
[34]
A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and metrics for cold-start recommendations. In SIGIR. ACM, 2002.
[35]
L. Shi. Trading-off among accuracy, similarity, diversity, and long-tail: a graph-based recommendation approach. In RecSys. ACM, 2013.
[36]
J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning algorithms. In NIPS, pages 2951--2959, 2012.
[37]
C. Tan, E. H. Chi, D. Huffaker, G. Kossinets, and A. J. Smola. Instant foodie: Predicting expert ratings from grassroots. In CIKM, 2013.
[38]
L. Vilnis and A. McCallum. Word representations via gaussian embedding. arXiv:1412.6623, 2014.
[39]
H. Yin, B. Cui, J. Li, J. Yao, and C. Chen. Challenging the long tail recommendation. Proc. VLDB Endow., 5(9):896--907, May 2012.
[40]
X. Yu, H. Ma, B.-J. P. Hsu, and J. Han. On building entity recommender systems using user click log and freebase knowledge. In WSDM. ACM, 2014.
[41]
Z. Zhao, Z. Cheng, L. Hong, and E. H. Chi. Improving user topic interest profiles by behavior factorization. In WWW, pages 1406--1416, 2015.

Cited By

View all
  • (2024)Implementação de Medidas de Justiça Social: Um Estudo de Caso no Contexto Cultural para Diferentes Estratégias em Sistemas de RecomendaçãoiSys - Brazilian Journal of Information Systems10.5753/isys.2024.421417:1Online publication date: 27-Dec-2024
  • (2024)Research on Labeling System for Radio and Television Intelligent Recommendation SystemProceedings of the 2024 4th International Conference on Artificial Intelligence, Big Data and Algorithms10.1145/3690407.3690509(599-603)Online publication date: 21-Jun-2024
  • (2024)Biased User History Synthesis for Personalized Long-Tail Item RecommendationProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3688141(189-199)Online publication date: 8-Oct-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
WWW '17: Proceedings of the 26th International Conference on World Wide Web
April 2017
1678 pages
ISBN:9781450349130

Sponsors

  • IW3C2: International World Wide Web Conference Committee

In-Cooperation

Publisher

International World Wide Web Conferences Steering Committee

Republic and Canton of Geneva, Switzerland

Publication History

Published: 03 April 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. hyperparameter optimization
  2. recommendation
  3. recommender systems
  4. regularization

Qualifiers

  • Research-article

Conference

WWW '17
Sponsor:
  • IW3C2

Acceptance Rates

WWW '17 Paper Acceptance Rate 164 of 966 submissions, 17%;
Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)20
  • Downloads (Last 6 weeks)2
Reflects downloads up to 23 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Implementação de Medidas de Justiça Social: Um Estudo de Caso no Contexto Cultural para Diferentes Estratégias em Sistemas de RecomendaçãoiSys - Brazilian Journal of Information Systems10.5753/isys.2024.421417:1Online publication date: 27-Dec-2024
  • (2024)Research on Labeling System for Radio and Television Intelligent Recommendation SystemProceedings of the 2024 4th International Conference on Artificial Intelligence, Big Data and Algorithms10.1145/3690407.3690509(599-603)Online publication date: 21-Jun-2024
  • (2024)Biased User History Synthesis for Personalized Long-Tail Item RecommendationProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3688141(189-199)Online publication date: 8-Oct-2024
  • (2024)Cluster Anchor Regularization to Alleviate Popularity Bias in Recommender SystemsCompanion Proceedings of the ACM Web Conference 202410.1145/3589335.3648312(151-160)Online publication date: 13-May-2024
  • (2024)Federated Conversational Recommender SystemsAdvances in Information Retrieval10.1007/978-3-031-56069-9_4(50-65)Online publication date: 23-Mar-2024
  • (2023)Alleviating the Long-Tail Problem in Conversational Recommender SystemsProceedings of the 17th ACM Conference on Recommender Systems10.1145/3604915.3608812(374-385)Online publication date: 14-Sep-2023
  • (2023)Full Index Deep Retrieval: End-to-End User and Item Structures for Cold-start and Long-tail Item RecommendationProceedings of the 17th ACM Conference on Recommender Systems10.1145/3604915.3608773(47-57)Online publication date: 14-Sep-2023
  • (2023)Targeted Training for Multi-organization RecommendationACM Transactions on Recommender Systems10.1145/36035081:3(1-18)Online publication date: 14-Jul-2023
  • (2023)Analysis and visualization of the parameter space of matrix factorization-based recommender systems3rd International Conference on Applied Mathematics, Modelling, and Intelligent Computing (CAMMIC 2023)10.1117/12.2686703(209)Online publication date: 28-Jul-2023
  • (2023)LogitMat: Zeroshot Learning Algorithm for Recommender Systems without Transfer Learning or Pretrained Models2023 8th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA)10.1109/ICCCBDA56900.2023.10154697(138-142)Online publication date: 26-Apr-2023
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media