Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
  • Davila N, Nunes I and Wiese I. (2025). A fine-grained taxonomy of code review feedback in TypeScript projects. Empirical Software Engineering. 10.1007/s10664-024-10604-y. 30:2. Online publication date: 1-Mar-2025.

    https://link.springer.com/10.1007/s10664-024-10604-y

  • Liu J, Zhang Y, Li Y, Ma T and Dong W. (2025). CIPAC: A framework of automated software construction based on collective intelligence. Journal of Systems and Software. 10.1016/j.jss.2025.112335. (112335). Online publication date: 1-Jan-2025.

    https://linkinghub.elsevier.com/retrieve/pii/S0164121225000032

  • Gonçalves C and Gonçalves C. (2025). Assessment on the Effectiveness of GitHub Copilot as a Code Assistance Tool: An Empirical Study. Progress in Artificial Intelligence. 10.1007/978-3-031-73503-5_3. (27-38).

    https://link.springer.com/10.1007/978-3-031-73503-5_3

  • Karnalim O. (2025). Identifying AI Generated Code with Parallel KNN Weight Outlier Detection. Advanced Technologies and the University of the Future. 10.1007/978-3-031-71530-3_29. (459-470).

    https://link.springer.com/10.1007/978-3-031-71530-3_29

  • Heng P, Yongsiriwit K and Chaisiriprasert P. (2024). Comparing the Effectiveness of Generative AI for Learning and Developing Flutter Application 2024 8th International Conference on Information Technology (InCIT). 10.1109/InCIT63192.2024.10810490. 979-8-3503-6630-3. (746-751).

    https://ieeexplore.ieee.org/document/10810490/

  • Boumediene H and Bouakkaz M. (2024). Changes in homework submission patterns with the advent of AI tools: a high school perspective. STUDIES IN EDUCATION SCIENCES. 10.54019/sesv5n4-001. 5:4. (e10249).

    https://ojs.studiespublicacoes.com.br/ojs/index.php/ses/article/view/10249

  • Hopf K, Nahr N, Staake T and Lehner F. (2024). The group mind of hybrid teams with humans and intelligent agents in knowledge-intense work. Journal of Information Technology. 10.1177/02683962241296883.

    https://journals.sagepub.com/doi/10.1177/02683962241296883

  • Cirett-Galán F, Torres-Peralta R, Navarro-Hernández R, Ochoa-Hernández J, Contreras-Rivera S, Estrada-Ríos L and Machado-Encinas G. (2024). Assessing the Use of GitHub Copilot on Students of Engineering of Information Systems. International Journal of Software Engineering and Knowledge Engineering. 10.1142/S0218194024500335. 34:11. (1717-1734). Online publication date: 1-Nov-2024.

    https://www.worldscientific.com/doi/10.1142/S0218194024500335

  • Davila N, Melegati J and Wiese I. (2024). Tales From the Trenches: Expectations and Challenges From Practice for Code Review in the Generative AI Era. IEEE Software. 41:6. (38-45). Online publication date: 1-Nov-2024.

    https://doi.org/10.1109/MS.2024.3428439

  • Le K and Andrzejak A. (2024). Rethinking AI code generation: a one-shot correction approach based on user feedback. Automated Software Engineering. 10.1007/s10515-024-00451-y. 31:2. Online publication date: 1-Nov-2024.

    https://link.springer.com/10.1007/s10515-024-00451-y

  • Zhang Z, Wen L, Jiang Y and Liu Y. (2024). Evaluate Chat‐GPT 's programming capability in Swift through real university exam questions . Software: Practice and Experience. 10.1002/spe.3330. 54:11. (2129-2143). Online publication date: 1-Nov-2024.

    https://onlinelibrary.wiley.com/doi/10.1002/spe.3330

  • Armstrong L, Liu A, MacNeil S and Metaxa D. The Silicon Ceiling: Auditing GPT’s Race and Gender Biases in Hiring. Proceedings of the 4th ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. (1-18).

    https://doi.org/10.1145/3689904.3694699

  • Li S, Cheng Y, Chen J, Xuan J, He S and Shang W. (2024). Assessing the Performance of AI-Generated Code: A Case Study on GitHub Copilot 2024 IEEE 35th International Symposium on Software Reliability Engineering (ISSRE). 10.1109/ISSRE62328.2024.00030. 979-8-3503-5388-4. (216-227).

    https://ieeexplore.ieee.org/document/10771230/

  • Siddiq M, da Silva Santos J, Devareddy S and Muller A. SALLM: Security Assessment of Generated Code. Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering Workshops. (54-65).

    https://doi.org/10.1145/3691621.3694934

  • Zhang B, Liang P, Feng Q, Fu Y and Li Z. Copilot-in-the-Loop: Fixing Code Smells in Copilot-Generated Python Code using Copilot. Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering. (2230-2234).

    https://doi.org/10.1145/3691620.3695290

  • Sahoo P, Pujar S, Nalawade G, Genhardt R, Mandel L and Buratti L. Ansible Lightspeed: A Code Generation Service for IT Automation. Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering. (2148-2158).

    https://doi.org/10.1145/3691620.3695277

  • Billah M, Roy P, Codabux Z and Roy B. Are Large Language Models a Threat to Programming Platforms? An Exploratory Study. Proceedings of the 18th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. (292-301).

    https://doi.org/10.1145/3674805.3686689

  • Collins K, Sucholutsky I, Bhatt U, Chandra K, Wong L, Lee M, Zhang C, Zhi-Xuan T, Ho M, Mansinghka V, Weller A, Tenenbaum J and Griffiths T. (2024). Building machines that learn and think with people. Nature Human Behaviour. 10.1038/s41562-024-01991-9. 8:10. (1851-1863).

    https://www.nature.com/articles/s41562-024-01991-9

  • Guo Y, Bettaieb S and Casino F. (2024). A comprehensive analysis on software vulnerability detection datasets: trends, challenges, and road ahead. International Journal of Information Security. 23:5. (3311-3327). Online publication date: 1-Oct-2024.

    https://doi.org/10.1007/s10207-024-00888-y

  • Kostadinov A. (2024). Application of Artificial Intelligence in Hardware Description Languages Education 2024 XXXIII International Scientific Conference Electronics (ET). 10.1109/ET63133.2024.10721535. 979-8-3503-7644-9. (1-5).

    https://ieeexplore.ieee.org/document/10721535/

  • Liu C, Cai Y, Lin Y, Huang Y, Pei Y, Jiang B, Yang P, Dong J and Mei H. CoEdPilot: Recommending Code Edits with Learned Prior Edit Relevance, Project-wise Awareness, and Interactive Nature. Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis. (466-478).

    https://doi.org/10.1145/3650212.3652142

  • Tran K, Zhang J, Pfeiffer J, Wortmann A and Wiesmayr B. (2024). Generating PLC Code with Universal Large Language Models 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA). 10.1109/ETFA61755.2024.10711113. 979-8-3503-6123-0. (1-8).

    https://ieeexplore.ieee.org/document/10711113/

  • Godoy W, Valero‐Lara P, Teranishi K, Balaprakash P and Vetter J. (2024). Large language model evaluation for high‐performance computing software development. Concurrency and Computation: Practice and Experience. 10.1002/cpe.8269.

    https://onlinelibrary.wiley.com/doi/10.1002/cpe.8269

  • Tang N, Chen M, Ning Z, Bansal A, Huang Y, McMillan C and Li T. (2024). Developer Behaviors in Validating and Repairing LLM-Generated Code Using IDE and Eye Tracking 2024 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 10.1109/VL/HCC60511.2024.00015. 979-8-3503-6613-6. (40-46).

    https://ieeexplore.ieee.org/document/10714560/

  • Ambati S, Ridley N, Branca E and Stakhanova N. (2024). Navigating (in)Security of AI-Generated Code 2024 IEEE International Conference on Cyber Security and Resilience (CSR). 10.1109/CSR61664.2024.10679468. 979-8-3503-7536-7. (1-8).

    https://ieeexplore.ieee.org/document/10679468/

  • Fakhoury S, Naik A, Sakkas G, Chakraborty S and Lahiri S. (2024). LLM-Based Test-Driven Interactive Code Generation: User Study and Empirical Evaluation. IEEE Transactions on Software Engineering. 50:9. (2254-2268). Online publication date: 1-Sep-2024.

    https://doi.org/10.1109/TSE.2024.3428972

  • Sengul C, Neykova R and Destefanis G. (2024). Software engineering education in the era of conversational AI: current trends and future directions. Frontiers in Artificial Intelligence. 10.3389/frai.2024.1436350. 7.

    https://www.frontiersin.org/articles/10.3389/frai.2024.1436350/full

  • Dong Y, Zhang Z, Cui M and Xu H. (2024). SafeNet: Towards mitigating replaceable unsafe Rust code via a recommendation‐based approach. Software Testing, Verification and Reliability. 10.1002/stvr.1875. 34:5. Online publication date: 1-Aug-2024.

    https://onlinelibrary.wiley.com/doi/10.1002/stvr.1875

  • Abu Doush I. (2024). The Current State of Generative Artificial Intelligence Tools for Accessibility in Product Development. Nafath. 10.54455/MCN2605. 9:26. Online publication date: 30-Jul-2024.

    https://nafath.mada.org.qa/nafath-article/MCN2605

  • Kampik T, Warmuth C, Rebmann A, Agam R, Egger L, Gerber A, Hoffart J, Kolk J, Herzig P, Decker G, van der Aa H, Polyvyanyy A, Rinderle-Ma S, Weber I and Weidlich M. (2024). Large Process Models: A Vision for Business Process Management in the Age of Generative AI. KI - Künstliche Intelligenz. 10.1007/s13218-024-00863-8.

    https://link.springer.com/10.1007/s13218-024-00863-8

  • Vodrahalli K and Zou J. ArtWhisperer. Proceedings of the 41st International Conference on Machine Learning. (49627-49654).

    /doi/10.5555/3692070.3694099

  • Khojah R, Mohamad M, Leitner P and de Oliveira Neto F. (2024). Beyond Code Generation: An Observational Study of ChatGPT Usage in Software Engineering Practice. Proceedings of the ACM on Software Engineering. 1:FSE. (1819-1840). Online publication date: 12-Jul-2024.

    https://doi.org/10.1145/3660788

  • Murali V, Maddila C, Ahmad I, Bolin M, Cheng D, Ghorbani N, Fernandez R, Nagappan N and Rigby P. (2024). AI-Assisted Code Authoring at Scale: Fine-Tuning, Deploying, and Mixed Methods Evaluation. Proceedings of the ACM on Software Engineering. 1:FSE. (1066-1085). Online publication date: 12-Jul-2024.

    https://doi.org/10.1145/3643774

  • Dunay O, Cheng D, Tait A, Thakkar P, Rigby P, Chiu A, Ahmad I, Ganesan A, Maddila C, Murali V, Tayyebi A and Nagappan N. Multi-line AI-Assisted Code Authoring. Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering. (150-160).

    https://doi.org/10.1145/3663529.3663836

  • Laue R, Maranhão J and Guerra E. Asking ChatGPT for Pattern Recommendations: EuroPLoP 2024 Focus Group Report. Proceedings of the 29th European Conference on Pattern Languages of Programs, People, and Practices. (1-7).

    https://doi.org/10.1145/3698322.3698361

  • Denzler B, Vahid F, Pang A and Salloum M. Style Anomalies Can Suggest Cheating in CS1 Programs. Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1. (381-387).

    https://doi.org/10.1145/3649217.3653626

  • Gardella N, Pettit R and Riggs S. Performance, Workload, Emotion, and Self-Efficacy of Novice Programmers Using AI Code Generation. Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1. (290-296).

    https://doi.org/10.1145/3649217.3653615

  • Denny P, MacNeil S, Savelka J, Porter L and Luxton-Reilly A. Desirable Characteristics for AI Teaching Assistants in Programming Education. Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1. (408-414).

    https://doi.org/10.1145/3649217.3653574

  • Russo D. (2024). Navigating the Complexity of Generative AI Adoption in Software Engineering. ACM Transactions on Software Engineering and Methodology. 33:5. (1-50). Online publication date: 30-Jun-2024.

    https://doi.org/10.1145/3652154

  • Liu Y, Le-Cong T, Widyasari R, Tantithamthavorn C, Li L, Le X and Lo D. (2024). Refining ChatGPT-Generated Code: Characterizing and Mitigating Code Quality Issues. ACM Transactions on Software Engineering and Methodology. 33:5. (1-26). Online publication date: 30-Jun-2024.

    https://doi.org/10.1145/3643674

  • Paspallis N and Panayiotou P. An Assessment of ML-based Sentiment Analysis for Intelligent Web Filtering. Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments. (80-87).

    https://doi.org/10.1145/3652037.3652039

  • Karathanasis C, Maikantis T, Nikolaidis N, Ampatzoglou A, Chatzigeorgiou A and Mittas N. (2024). A Semi-Automated Approach for Resolving Data-Driven Architecture Mismatches 2024 IEEE 21st International Conference on Software Architecture Companion (ICSA-C). 10.1109/ICSA-C63560.2024.00007. 979-8-3503-6625-9. (1-7).

    https://ieeexplore.ieee.org/document/10628225/

  • Liu Z, Tang Y, Luo X, Zhou Y and Zhang L. No Need to Lift a Finger Anymore? Assessing the Quality of Code Generation by ChatGPT. IEEE Transactions on Software Engineering. 10.1109/TSE.2024.3392499. 50:6. (1548-1584).

    https://ieeexplore.ieee.org/document/10507163/

  • Hamer S, d’Amorim M and Williams L. (2024). Just another copy and paste? Comparing the security vulnerabilities of ChatGPT generated code and StackOverflow answers 2024 IEEE Security and Privacy Workshops (SPW). 10.1109/SPW63631.2024.00014. 979-8-3503-5487-4. (87-94).

    https://ieeexplore.ieee.org/document/10579524/

  • Englhardt Z, Li R, Nissanka D, Zhang Z, Narayanswamy G, Breda J, Liu X, Patel S and Iyer V. Exploring and Characterizing Large Language Models for Embedded System Development and Debugging. Extended Abstracts of the CHI Conference on Human Factors in Computing Systems. (1-9).

    https://doi.org/10.1145/3613905.3650764

  • Lira W, Santos Neto P and Osorio L. (2024). Uma análise do uso de ferramentas de geração de código por alunos de computação Simpósio Brasileiro de Educação em Computação. 10.5753/educomp.2024.237427. . (63-71).

    https://sol.sbc.org.br/index.php/educomp/article/view/28174

  • Sergeyuk A, Titov S and Izadi M. In-IDE Human-AI Experience in the Era of Large Language Models; A Literature Review. Proceedings of the 1st ACM/IEEE Workshop on Integrated Development Environments. (95-100).

    https://doi.org/10.1145/3643796.3648463

  • Davila N, Wiese I, Steinmacher I, Lucio da Silva L, Kawamoto A, Favaro G and Nunes I. An Industry Case Study on Adoption of AI-based Programming Assistants. Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Practice. (92-102).

    https://doi.org/10.1145/3639477.3643648

  • Davis E. (2024). Mathematics, word problems, common sense, and artificial intelligence. Bulletin of the American Mathematical Society. 10.1090/bull/1828. 61:2. (287-303).

    https://www.ams.org/bull/2024-61-02/S0273-0979-2024-01828-X/

  • Xu X, Yin J, Gu C, Mar J, Zhang S, E J and Dow S. Jamplate: Exploring LLM-Enhanced Templates for Idea Reflection. Proceedings of the 29th International Conference on Intelligent User Interfaces. (907-921).

    https://doi.org/10.1145/3640543.3645196

  • Majdinasab V, Bishop M, Rasheed S, Moradidakhel A, Tahir A and Khomh F. (2024). Assessing the Security of GitHub Copilot's Generated Code - A Targeted Replication Study 2024 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 10.1109/SANER60148.2024.00051. 979-8-3503-3066-3. (435-444).

    https://ieeexplore.ieee.org/document/10589764/

  • Nikolaidis N, Flamos K, Gulati K, Feitosa D, Ampatzoglou A and Chatzigeorgiou A. (2024). A Comparison of the Effectiveness of ChatGPT and Co-Pilot for Generating Quality Python Code Solutions 2024 IEEE International Conference on Software Analysis, Evolution and Reengineering - Companion (SANER-C). 10.1109/SANER-C62648.2024.00018. 979-8-3503-5157-6. (93-101).

    https://ieeexplore.ieee.org/document/10621717/

  • Poitras E, Crane B, Dempsey D, Bragg T, Siegel A and Lin M. (2024). Cognitive Apprenticeship and Artificial Intelligence Coding Assistants. Navigating Computer Science Education in the 21st Century. 10.4018/979-8-3693-1066-3.ch013. (261-281).

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/979-8-3693-1066-3.ch013

  • Yeo S, Ma Y, Kim S, Jun H and Kim T. (2024). Framework for evaluating code generation ability of large language models. ETRI Journal. 10.4218/etrij.2023-0357. 46:1. (106-117). Online publication date: 1-Feb-2024.

    https://onlinelibrary.wiley.com/doi/10.4218/etrij.2023-0357

  • Idrisov B and Schlippe T. (2024). Program Code Generation with Generative AIs. Algorithms. 10.3390/a17020062. 17:2. (62).

    https://www.mdpi.com/1999-4893/17/2/62

  • Sheese B, Liffiton M, Savelka J and Denny P. Patterns of Student Help-Seeking When Using a Large Language Model-Powered Programming Assistant. Proceedings of the 26th Australasian Computing Education Conference. (49-57).

    https://doi.org/10.1145/3636243.3636249

  • Zhang L. (2024). Designing Accessible Content Creation Support with Blind and Low Vision Creators. ACM SIGACCESS Accessibility and Computing:137. (1-1). Online publication date: 1-Jan-2024.

    https://doi.org/10.1145/3654768.3654775

  • Fatima S, Hemmati H and Briand L. FlakyFix: Using Large Language Models for Predicting Flaky Test Fix Categories and Test Code Repair. IEEE Transactions on Software Engineering. 10.1109/TSE.2024.3472476. (1-26).

    https://ieeexplore.ieee.org/document/10704582/

  • Kostis A, Lidström J, Nair S and Holmström J. Too Much AI Hype, Too Little Emphasis on Learning? Entrepreneurs Designing Business Models Through Learning-by-Conversing With Generative AI. IEEE Transactions on Engineering Management. 10.1109/TEM.2024.3484750. 71. (15278-15291).

    https://ieeexplore.ieee.org/document/10726882/

  • Baralla G, Ibba G and Tonelli R. Assessing GitHub Copilot in Solidity Development: Capabilities, Testing, and Bug Fixing. IEEE Access. 10.1109/ACCESS.2024.3486365. 12. (164389-164411).

    https://ieeexplore.ieee.org/document/10735191/

  • Haindl P and Weinberger G. Does ChatGPT Help Novice Programmers Write Better Code? Results From Static Code Analysis. IEEE Access. 10.1109/ACCESS.2024.3445432. 12. (114146-114156).

    https://ieeexplore.ieee.org/document/10638538/

  • Ani Z, Hamid Z and Zhamri N. (2024). The Recent Trends of Research on GitHub Copilot: A Systematic Review. Computing and Informatics. 10.1007/978-981-99-9589-9_27. (355-366).

    https://link.springer.com/10.1007/978-981-99-9589-9_27

  • Zhang Z, Wen L, Zhang S, Chen D and Jiang Y. (2024). Evaluating GPT’s Programming Capability Through CodeWars’ Katas. Knowledge Science, Engineering and Management. 10.1007/978-981-97-5489-2_2. (17-26).

    https://link.springer.com/10.1007/978-981-97-5489-2_2

  • Codabux Z, Fard F, Verdecchia R, Palomba F, Di Nucci D and Recupito G. (2024). Teaching Mining Software Repositories. Handbook on Teaching Empirical Software Engineering. 10.1007/978-3-031-71769-7_12. (325-362).

    https://link.springer.com/10.1007/978-3-031-71769-7_12

  • Yang B, Li H and Cai D. (2024). GPT4D: Automatic Cross-Version Linux Driver Upgrade Toolkit. Machine Learning and Intelligent Communication. 10.1007/978-3-031-71716-1_11. (132-141).

    https://link.springer.com/10.1007/978-3-031-71716-1_11

  • Dakhel A, Nikanjam A, Khomh F, Desmarais M and Washizaki H. (2024). Generative AI for Software Development: A Family of Studies on Code Generation. Generative AI for Effective Software Development. 10.1007/978-3-031-55642-5_7. (151-172).

    https://link.springer.com/10.1007/978-3-031-55642-5_7

  • Ronanki K, Cabrero-Daniel B, Horkoff J and Berger C. (2024). Requirements Engineering Using Generative AI: Prompts and Prompting Patterns. Generative AI for Effective Software Development. 10.1007/978-3-031-55642-5_5. (109-127).

    https://link.springer.com/10.1007/978-3-031-55642-5_5

  • Melegati J and Guerra E. (2024). DAnTE: A Taxonomy for the Automation Degree of Software Engineering Tasks. Generative AI for Effective Software Development. 10.1007/978-3-031-55642-5_3. (53-70).

    https://link.springer.com/10.1007/978-3-031-55642-5_3

  • Pereira G, Prikladnicki R, Jackson V, van der Hoek A, Fortes L and Macaubas I. (2024). Early Results from a Study of GenAI Adoption in a Large Brazilian Company: The Case of Globo. Generative AI for Effective Software Development. 10.1007/978-3-031-55642-5_13. (275-293).

    https://link.springer.com/10.1007/978-3-031-55642-5_13

  • Kumar A, Lakshmi Devi M and Saltz J. (2023). Bridging the Gap in AI-Driven Workflows: The Case for Domain-Specific Generative Bots 2023 IEEE International Conference on Big Data (BigData). 10.1109/BigData59044.2023.10386894. 979-8-3503-2445-7. (2421-2430).

    https://ieeexplore.ieee.org/document/10386894/

  • Hamdi M and Kim L. (2023). A Prompt-Based Approach for Software Development 2023 International Conference on Computational Science and Computational Intelligence (CSCI). 10.1109/CSCI62032.2023.00267. 979-8-3503-6151-3. (1612-1614).

    https://ieeexplore.ieee.org/document/10590337/

  • Mehmood S, Janjua U and Ahmed A. (2023). From Manual to Automatic: The Evolution of Test Case Generation Methods and the Role of GitHub Copilot 2023 International Conference on Frontiers of Information Technology (FIT). 10.1109/FIT60620.2023.00013. 979-8-3503-9578-5. (13-18).

    https://ieeexplore.ieee.org/document/10410393/

  • Atkinson C. (2023). ChatGPT and computational-based research: benefits, drawbacks, and machine learning applications. Discover Artificial Intelligence. 10.1007/s44163-023-00091-3. 3:1.

    https://link.springer.com/10.1007/s44163-023-00091-3

  • Zhang B, Liang P, Zhou X, Ahmad A and Waseem M. (2023). Demystifying Practices, Challenges and Expected Features of Using GitHub Copilot. International Journal of Software Engineering and Knowledge Engineering. 10.1142/S0218194023410048. 33:11n12. (1653-1672). Online publication date: 1-Dec-2023.

    https://www.worldscientific.com/doi/10.1142/S0218194023410048

  • Tjaden J, Tjaden B and Piccolo S. (2023). MLpronto: A tool for democratizing machine learning. PLOS ONE. 10.1371/journal.pone.0294924. 18:11. (e0294924).

    https://dx.plos.org/10.1371/journal.pone.0294924

  • Carr N, Shawon F and Jamil H. (2023). An Experiment on Leveraging ChatGPT for Online Teaching and Assessment of Database Students 2023 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE). 10.1109/TALE56641.2023.10398239. 978-1-6654-5331-8. (1-8).

    https://ieeexplore.ieee.org/document/10398239/

  • Penney J, Pimentel J, Steinmacher I and Gerosa M. Anticipating User Needs: Insights from Design Fiction on Conversational Agents for Computational Thinking. Chatbot Research and Design. (204-219).

    https://doi.org/10.1007/978-3-031-54975-5_12

  • Wang J and Chen Y. (2023). A Review on Code Generation with LLMs: Application and Evaluation 2023 IEEE International Conference on Medical Artificial Intelligence (MedAI). 10.1109/MedAI59581.2023.00044. 979-8-3503-5878-0. (284-289).

    https://ieeexplore.ieee.org/document/10403378/

  • Liffiton M, Sheese B, Savelka J and Denny P. CodeHelp: Using Large Language Models with Guardrails for Scalable Support in Programming Classes. Proceedings of the 23rd Koli Calling International Conference on Computing Education Research. (1-11).

    https://doi.org/10.1145/3631802.3631830

  • Chen B, Mustakin N, Hoang A, Fuad S and Wong D. VSCuda: LLM based CUDA extension for Visual Studio Code. Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis. (11-17).

    https://doi.org/10.1145/3624062.3624064

  • Asare O, Nagappan M and Asokan N. (2023). Is GitHub’s Copilot as bad as humans at introducing vulnerabilities in code?. Empirical Software Engineering. 28:6. Online publication date: 1-Nov-2023.

    https://doi.org/10.1007/s10664-023-10380-1

  • Karanjai R, Li E, Xu L and Shi W. (2023). Who is Smarter? An Empirical Study of AI-Based Smart Contract Creation 2023 5th Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS). 10.1109/BRAINS59668.2023.10316829. 979-8-3503-1782-4. (1-8).

    https://ieeexplore.ieee.org/document/10316829/

  • Peng X, Zhang Y, Yang J and Stevenson M. (2023). On the Vulnerabilities of Text-to-SQL Models 2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE). 10.1109/ISSRE59848.2023.00047. 979-8-3503-1594-3. (1-12).

    https://ieeexplore.ieee.org/document/10301242/

  • Petersone I, Dovgaluka E, Gudzuka J, Kartenko R and Romanovs A. (2023). An Analysis of IT Outsourcing Risks in Post-COVID World 2023 IEEE 64th International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS). 10.1109/ITMS59786.2023.10317676. 979-8-3503-7029-4. (1-9).

    https://ieeexplore.ieee.org/document/10317676/

  • Reid B, Treude C and Wagner M. (2023). Using the TypeScript compiler to fix erroneous Node.js snippets 2023 IEEE 23rd International Working Conference on Source Code Analysis and Manipulation (SCAM). 10.1109/SCAM59687.2023.00031. 979-8-3503-0506-7. (220-230).

    https://ieeexplore.ieee.org/document/10356712/

  • Tran N, May J, Ho N and Ngo L. (2023). Exploring ChatGPT's Ability to Solve Programming Problems with Complex Context. Journal of Computing Sciences in Colleges. 39:3. (195-209). Online publication date: 1-Oct-2023.

    /doi/10.5555/3636988.3637017

  • Dantas C, Rocha A and Maia M. Assessing the Readability of ChatGPT Code Snippet Recommendations: A Comparative Study. Proceedings of the XXXVII Brazilian Symposium on Software Engineering. (283-292).

    https://doi.org/10.1145/3613372.3613413

  • Wuisang M, Kurniawan M, Wira Santosa K, Agung Santoso Gunawan A and Saputra K. (2023). An Evaluation of the Effectiveness of OpenAI's ChatGPT for Automated Python Program Bug Fixing using QuixBugs 2023 International Seminar on Application for Technology of Information and Communication (iSemantic). 10.1109/iSemantic59612.2023.10295323. 979-8-3503-3921-5. (295-300).

    https://ieeexplore.ieee.org/document/10295323/

  • Nascimento N, Alencar P and Cowan D. Artificial Intelligence vs. Software Engineers: An Empirical Study on Performance and Efficiency using ChatGPT. Proceedings of the 33rd Annual International Conference on Computer Science and Software Engineering. (24-33).

    /doi/10.5555/3615924.3615927

  • Moradi Dakhel A, Majdinasab V, Nikanjam A, Khomh F, Desmarais M and Jiang Z. (2023). GitHub Copilot AI pair programmer. Journal of Systems and Software. 203:C. Online publication date: 1-Sep-2023.

    https://doi.org/10.1016/j.jss.2023.111734

  • Godoy W, Valero-Lara P, Teranishi K, Balaprakash P and Vetter J. Evaluation of OpenAI Codex for HPC Parallel Programming Models Kernel Generation. Proceedings of the 52nd International Conference on Parallel Processing Workshops. (136-144).

    https://doi.org/10.1145/3605731.3605886

  • Savelka J, Agarwal A, An M, Bogart C and Sakr M. Thrilled by Your Progress! Large Language Models (GPT-4) No Longer Struggle to Pass Assessments in Higher Education Programming Courses. Proceedings of the 2023 ACM Conference on International Computing Education Research - Volume 1. (78-92).

    https://doi.org/10.1145/3568813.3600142

  • Wang W, Bacher J, Isvik A, Limke A, Sthapit S, Shi Y, Tabarsi B, Tran K, Cateté V, Barnes T, Martens C and Price T. Investigating the Impact of On-Demand Code Examples on Novices' Open-Ended Programming Experience. Proceedings of the 2023 ACM Conference on International Computing Education Research - Volume 1. (464-475).

    https://doi.org/10.1145/3568813.3600141

  • Kim D, Chen J, Ming H and Lu L. (2023). Assessment of ChatGPT's Proficiency in Software Development 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE). 10.1109/CSCE60160.2023.00421. 979-8-3503-2759-5. (2637-2644).

    https://ieeexplore.ieee.org/document/10487259/

  • Horne D, Pierson A, Hedary E, Freddo G, Trejo L, Matis M and Mask L. (2023). VADER-SC: A Model Agnostic Tool for Large Scale, AI Driven Automated Source Code Summarization 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE). 10.1109/CSCE60160.2023.00416. 979-8-3503-2759-5. (2600-2607).

    https://ieeexplore.ieee.org/document/10487593/

  • Horne D. (2023). PwnPilot: Reflections on Trusting Trust in the Age of Large Language Models and AI Code Assistants 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE). 10.1109/CSCE60160.2023.00396. 979-8-3503-2759-5. (2457-2464).

    https://ieeexplore.ieee.org/document/10487488/

  • Elvira T, Procko T, Couder J and Ochoa O. (2023). Digital Rubber Duck: Leveraging Large Language Models for Extreme Programming 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE). 10.1109/CSCE60160.2023.00051. 979-8-3503-2759-5. (295-304).

    https://ieeexplore.ieee.org/document/10487209/

  • Fernandez R, Elmore A, Franklin M, Krishnan S and Tan C. (2023). How Large Language Models Will Disrupt Data Management. Proceedings of the VLDB Endowment. 16:11. (3302-3309). Online publication date: 1-Jul-2023.

    https://doi.org/10.14778/3611479.3611527

  • Janke M and Mäder P. (2023). <inline-formula><tex-math notation="LaTeX">${\text{FS}^{3}}_{\text{change}}$</tex-math><alternatives><mml:math><mml:msub><mml:mrow><mml:msup><mml:mtext>FS</mml:mtext><mml:mn>3</mml:mn></mml:msup></mml:mrow><mml:mtext>change</mml:mtext></mml:msub></mml:math><inline-graphic xlink:href="janke-ieq1-3269500.gif"/></alternatives></inline-formula>: A Scalable Method for Change Pattern Mining. IEEE Transactions on Software Engineering. 49:6. (3616-3629). Online publication date: 1-Jun-2023.

    https://doi.org/10.1109/TSE.2023.3269500

  • Vert J. (2023). How will generative AI disrupt data science in drug discovery?. Nature Biotechnology. 10.1038/s41587-023-01789-6. 41:6. (750-751). Online publication date: 1-Jun-2023.

    https://www.nature.com/articles/s41587-023-01789-6

  • Nashid N, Sintaha M and Mesbah A. Retrieval-Based Prompt Selection for Code-Related Few-Shot Learning. Proceedings of the 45th International Conference on Software Engineering. (2450-2462).

    https://doi.org/10.1109/ICSE48619.2023.00205

  • Mastropaolo A, Pascarella L, Guglielmi E, Ciniselli M, Scalabrino S, Oliveto R and Bavota G. On the Robustness of Code Generation Techniques: An Empirical Study on GitHub Copilot. Proceedings of the 45th International Conference on Software Engineering. (2149-2160).

    https://doi.org/10.1109/ICSE48619.2023.00181

  • Fan Z, Gao X, Mirchev M, Roychoudhury A and Tan S. Automated Repair of Programs from Large Language Models. Proceedings of the 45th International Conference on Software Engineering. (1469-1481).

    https://doi.org/10.1109/ICSE48619.2023.00128

  • Li Z, Wang C, Liu Z, Wang H, Chen D, Wang S and Gao C. CCTest: Testing and Repairing Code Completion Systems. Proceedings of the 45th International Conference on Software Engineering. (1238-1250).

    https://doi.org/10.1109/ICSE48619.2023.00110

  • Fan A, Gokkaya B, Harman M, Lyubarskiy M, Sengupta S, Yoo S and Zhang J. (2023). Large Language Models for Software Engineering: Survey and Open Problems 2023 IEEE/ACM International Conference on Software Engineering: Future of Software Engineering (ICSE-FoSE). 10.1109/ICSE-FoSE59343.2023.00008. 979-8-3503-2496-9. (31-53).

    https://ieeexplore.ieee.org/document/10449667/

  • Jesse K, Ahmed T, Devanbu P and Morgan E. (2023). Large Language Models and Simple, Stupid Bugs 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR). 10.1109/MSR59073.2023.00082. 979-8-3503-1184-6. (563-575).

    https://ieeexplore.ieee.org/document/10174227/

  • Abukhalaf S, Hamdaqa M and Khomh F. (2023). On Codex Prompt Engineering for OCL Generation: An Empirical Study 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR). 10.1109/MSR59073.2023.00033. 979-8-3503-1184-6. (148-157).

    https://ieeexplore.ieee.org/document/10173990/

  • McKee F and Noever D. (2023). The Evolving Landscape of Cybersecurity: Red Teams, Large Language Models, and the Emergence of New AI Attack Surfaces. International Journal on Cryptography and Information Security. 10.5121/ijcis.2023.13101. 13:1. (1-34). Online publication date: 30-Mar-2023.

    https://wireilla.com/papers/ijcis/V13N1/13123ijcis01.pdf

  • Denny P, Kumar V and Giacaman N. Conversing with Copilot: Exploring Prompt Engineering for Solving CS1 Problems Using Natural Language. Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1. (1136-1142).

    https://doi.org/10.1145/3545945.3569823

  • Berndt S, Burke W, Gandara M, Kimes M, Klyne L, Mattmann C, Milano M, Nelson J, Nuernberger B, Sekiya M, Towler A and Tran A. From Universe to Metaverse: A Leap Into Virtual Collaboration at NASA JPL. IEEE Transactions on Industrial Cyber-Physical Systems. 10.1109/TICPS.2023.3327948. 1. (287-306).

    https://ieeexplore.ieee.org/document/10308622/

  • Tomer Y, Sharma R and Pandey R. (2023). Transformers-Based Automated PHP Code Generator. Innovations in Computational Intelligence and Computer Vision. 10.1007/978-981-99-2602-2_44. (583-594).

    https://link.springer.com/10.1007/978-981-99-2602-2_44

  • Yetistiren B, Ozsoy I and Tuzun E. Assessing the quality of GitHub copilot’s code generation. Proceedings of the 18th International Conference on Predictive Models and Data Analytics in Software Engineering. (62-71).

    https://doi.org/10.1145/3558489.3559072