Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

TriAL: A Navigational Algebra for RDF Triplestores

Published: 23 March 2018 Publication History
  • Get Citation Alerts
  • Abstract

    Navigational queries over RDF data are viewed as one of the main applications of graph query languages, and yet the standard model of graph databases—essentially labeled graphs—is different from the triples-based model of RDF. While encodings of RDF databases into graph data exist, we show that even the most natural ones are bound to lose some functionality when used in conjunction with graph query languages. The solution is to work directly with triples, but then many properties taken for granted in the graph database context (e.g., reachability) lose their natural meaning.
    Our goal is to introduce languages that work directly over triples and are closed, i.e., they produce sets of triples, rather than graphs. Our basic language is called TriAL, or Triple Algebra: it guarantees closure properties by replacing the product with a family of join operations. We extend TriAL with recursion and explain why such an extension is more intricate for triples than for graphs. We present a declarative language, namely a fragment of datalog, capturing the recursive algebra. For both languages, the combined complexity of query evaluation is given by low-degree polynomials. We compare our language with previously studied graph query languages such as adaptations of XPath, regular path queries, and nested regular expressions; many of these languages are subsumed by the recursive triple algebra. We also provide an implementation of recursive TriAL on top of a relational query engine, and we show its usefulness by running a wide array of navigational queries over real-world RDF data, while at the same time testing how our implementation compares to existing RDF systems.

    Supplementary Material

    a5-libkin-apndx.pdf (libkin.zip)
    Supplemental movie, appendix, image and software files for, TriAL: A Navigational Algebra for RDF Triplestores

    References

    [1]
    S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases. Addison-Wesley.
    [2]
    R. Angles. 2012. A comparison of current graph database models. In Proceedings of the International Conference on Data Engineering (ICDE’12). 171--177.
    [3]
    Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and Domagoj Vrgoc. 2016. Foundations of modern graph query languages. Retrieved from http://arxiv.org/abs/1610.06264.
    [4]
    R. Angles and C. Gutierrez. 2008. Survey of graph database models. Comput. Surveys 40, 1 (2008).
    [5]
    Renzo Angles, Arnau Prat-Pérez, David Dominguez-Sal, and Josep-Lluis Larriba-Pey. 2013. Benchmarking database systems for social network applications. In Proceedings of the 1st International Workshop on Graph Data Management Experiences and Systems (GRADES’13).
    [6]
    K. Anyanwu and A. P. Sheth. 2003. ρ-queries: Enabling querying for semantic associations on the semantic web. In Proceedings of the 12th International World Wide Web Conference (WWW’03). 690--699.
    [7]
    Marcelo Arenas, Georg Gottlob, and Andreas Pieris. 2014. Expressive languages for querying the semantic web. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS’14). 14--26.
    [8]
    M. Arenas and J. Pérez. 2011. Querying semantic web data with SPARQL. In Proceedings of the Symposium on Principles of Database Systems (PODS’11). 305--316.
    [9]
    Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George H. L. Fletcher, Aurélien Lemay, and Nicky Advokaat. 2017. gMark: Schema-driven generation of graphs and queries. IEEE Trans. Knowl. Data Eng. 29, 4 (2017), 856--869.
    [10]
    P. Barceló, J. Pérez, and J. L. Reutter. 2012. Relative expressiveness of nested regular expressions. In Proceedings of the American mathematical Society (AMW’12). 180--195.
    [11]
    P. Barceló, J. Pérez, and J. L. Reutter. 2013. Schema mappings and data exchange for graph databases. In Proceedings of the International Conference on Database Theory (ICDT’13).
    [12]
    Meghyn Bienvenu, Magdalena Ortiz, and Mantas Simkus. 2015. Navigational queries based on frontier-guarded datalog: Preliminary results. In Proceedings of the Alberto Mendelzon International Workshop on Foundations of Data Management. 162.
    [13]
    Christian Bizer and Andreas Schultz. 2009. The Berlin sparql benchmark. (2009).
    [14]
    Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. 2015. Reasonable highly expressive query languages. In Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI’15). 2826--2832.
    [15]
    D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. 2000. Containment of conjunctive regular path queries with inverse. In Proceedings of the 7th International Conference on Principles of Knowledge Representation and Reasoning (KR). 176--185.
    [16]
    D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. 2002. Rewriting of regular expressions and regular path queries. J. Comput. Syst. Sci. 64, 3 (2002), 443--465.
    [17]
    D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. 2003. Reasoning on regular path queries. ACM SIGMOD Rec. 32, 4 (2003), 83--92.
    [18]
    M. Consens and A. O. Mendelzon. 1990. GraphLog: A visual formalism for real life recursion. In Proceedings of the 9th ACM Symposium on Principles of Database Systems (PODS’90). 404--416.
    [19]
    I. Cruz, A. O. Mendelzon, and P. Wood. 1987. A graphical query language supporting recursion. In Proceedings of the ACM Special Interest Group on Management of Data 1987 Annual Conference (SIGMOD’87). 323--330.
    [20]
    P. Cudré-Mauroux and S. Elnikety. 2011. Graph data management systems for new application domains. Proceedings of the VLDB Endowment (PVLDB) 4, 12 (2011), 1510--1511.
    [21]
    Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. 2001. Complexity and expressive power of logic programming. ACM Comput. Surv. 33, 3 (2001), 374--425.
    [22]
    W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. 2010. Graph pattern matching: From intractable to polynomial time. Proceedings of the VLDB Endowment (PVLDB) 3, 1 (2010), 264--275.
    [23]
    W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. 2011. Adding regular expressions to graph reachability and pattern queries. In Proceedings of the 27th International Conference on Data Engineering (ICDE’11). 39--50.
    [24]
    George H. L. Fletcher, Marc Gyssens, Dirk Leinders, Dimitri Surinx, Jan Van den Bussche, Dirk Van Gucht, Stijn Vansummeren, and Yuqing Wu. 2015. Relative expressive power of navigational querying on graphs. Info. Sci. 298 (2015), 390--406.
    [25]
    G. H. L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht, S. Vansummeren, and Y. Wu. 2011. Relative expressive power of navigational querying on graphs. In Proceedings of the International Conference on Database Theory (ICDT’11). 197--207.
    [26]
    G. H. L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht, S. Vansummeren, and Y. Wu. 2012. The impact of transitive closure on the boolean expressiveness of navigational query languages on graphs. In Proceedings of the FoIKS. 124--143.
    [27]
    G. Gottlob, E. Grädel, and H. Veith. 2002. Datalog LITE: A deductive query language with linear time model checking. ACM TOCL 3, 1 (2002), 42--79.
    [28]
    G. Gottlob and C. Koch. 2004. Monadic datalog and the expressive power of languages for web information extraction. J. ACM 51, 1 (2004), 74--113.
    [29]
    Andrey Gubichev, Srikanta J. Bedathur, and Stephan Seufert. 2013. Sparqling kleene: Fast property paths in RDF-3X. In Proceedings of the International Workshop on Graph Data Management Experiences and Systems (GRADES’13). 14.
    [30]
    Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for OWL knowledge base systems. Web Semant.: Sci., Serv. Agents WWW 3, 2 (2005), 158--182.
    [31]
    D. Harel, D. Kozen, and J. Tiuryn. 2000. Dynamic Logic. MIT Press.
    [32]
    S. Harris and A. Seaborne. 2013. SPARQL 1.1 Query Language. W3C Recommendation. Retrieved from http://www.w3.org/TR/sparql11-query.
    [33]
    Daniel Hernández, Aidan Hogan, Cristian Riveros, Carlos Rojas, and Enzo Zerega. 2016. Querying wikidata: Comparing SPARQL, relational and graph databases. In Proceedings of the International Semantic Web Conference (ISWC’16). 88--103.
    [34]
    Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. 2011. Datalog and emerging applications: An interactive tutorial. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data. ACM, 1213--1216.
    [35]
    Egor V. Kostylev, Juan L. Reutter, Miguel Romero, and Domagoj Vrgoč. 2015. SPARQL with property paths. In Proceedings of the International Semantic Web Conference (ISWC’15). 3--18.
    [36]
    L. Libkin. 2004. Elements of Finite Model Theory. Springer.
    [37]
    L. Libkin, W. Martens, and D. Vrgoč. 2013. Querying graph databases with XPath. In Proceedings of the International Conference on Database Theory (ICDT’13).
    [38]
    Leonid Libkin, Wim Martens, and Domagoj Vrgoč. 2016. Querying graphs with data. J. ACM 63, 2 (2016), 14.
    [39]
    Leonid Libkin, Juan L. Reutter, and Domagoj Vrgoč. 2013. Trial for RDF: Adapting graph query languages for RDF data. In Proceedings of the Symposium on Principles of Database Systems (PODS’13). 201--212.
    [40]
    Christopher Longyear. 1972. Towards a triadic calculus, I-III. J. Cybernet. (1972), 50--65.
    [41]
    K. Losemann and W. Martens. 2012. The complexity of evaluating path expressions in SPARQL. In Proceedings of the Symposium on Principles of Database Systems (PODS’12). 101--112.
    [42]
    M. Marx. 2005. Conditional XPath. ACM Trans. Database Syst. 30, 4 (2005), 929--959.
    [43]
    Neo4j. 2013. Neo4j, The graph database. Retrieved from http://www.neo4j.org/.
    [44]
    Charles Sanders Peirce. 1885. On the algebra of logic: A contribution to the philosophy of notation. Amer. J. Math. 7, 2 (1885), 180--196.
    [45]
    Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2009. Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34, 3 (2009), 16.
    [46]
    J. Pérez, M. Arenas, and C. Gutierrez. 2010. nSPARQL: A navigational language for RDF. J. Web Semant. 8, 4 (2010), 255--270.
    [47]
    Axel Polleres and Johannes Peter Wallner. 2013. On the relation between SPARQL1.1 and answer set programming. J. Appl. Non-Class. Logics 23, 1--2 (2013), 159--212.
    [48]
    Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. 2015. Regular queries on graph databases. In Proceedings of the 18th International Conference on Database Theory (ICDT’15), Vol. 31. 177--194.
    [49]
    Juan L. Reutter, Adrián Soto, and Domagoj Vrgoč. 2015. Recursion in SPARQL. In Proceedings of the Semantic Web Conference (ISWC’15). 19--35.
    [50]
    Edward L. Robertson. 2004. Triadic relations: An algebra for the semantic web. In Proceedings of the Semantic Web and Databases 2nd International Workshop (SWDB’04). 91--108.
    [51]
    S. Rudolph and M. Krötzsch. 2013. Flag 8 check: Data access with monadically defined queries. In Proceedings of the Symposium on Principles of Database Systems (PODS’13). 151--162.
    [52]
    E. Schröder. 1890. 1905: Vorlesungen über die Algebra der Logik. 3 Bde. (1890).
    [53]
    Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: A core of semantic knowledge. In Proceedings of the 16th International Conference on World Wide Web (WWW’07). 697--706.
    [54]
    A. Tarski and S. Givant. 1987. A Formalization of Set Theory Without Variables. AMS.
    [55]
    M. Y. Vardi. 1995. On the complexity of bounded-variable queries. In Proceedings of the Symposium on Principles of Database Systems (PODS’95). 266--276.
    [56]
    D. Vrgoč. 2014. Querying Graphs with Data. Ph.D. Dissertation. School of Informatics, University of Edinburgh.
    [57]
    P. T. Wood. 2012. Query languages for graph databases. Sigmod Rec. 41, 1 (2012), 50--60.

    Cited By

    View all
    • (2023)Ontology-Based Generation of Data Platform Assets2023 IEEE International Conference on Big Data (BigData)10.1109/BigData59044.2023.10386910(2937-2941)Online publication date: 15-Dec-2023
    • (2022)Evaluating Complex Queries on Streaming Graphs2022 IEEE 38th International Conference on Data Engineering (ICDE)10.1109/ICDE53745.2022.00025(272-285)Online publication date: May-2022
    • (2022)An Algebra Supporting Semantic Query for Graph Data Model2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE)10.1109/ICCECE54139.2022.9712796(838-841)Online publication date: 14-Jan-2022
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Database Systems
    ACM Transactions on Database Systems  Volume 43, Issue 1
    Best of SIGMOD 2016 Papers and Regular Papers
    March 2018
    227 pages
    ISSN:0362-5915
    EISSN:1557-4644
    DOI:10.1145/3194314
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 23 March 2018
    Accepted: 01 September 2017
    Revised: 01 July 2017
    Received: 01 November 2016
    Published in TODS Volume 43, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Query evaluation
    2. RDF
    3. Triple Algebra

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • Nucleus Millenium Center for Semantic Web Research
    • CONICYT-PCHA Doctorado Nacional
    • FONDECYT Project
    • EPSRC

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)14
    • Downloads (Last 6 weeks)3

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Ontology-Based Generation of Data Platform Assets2023 IEEE International Conference on Big Data (BigData)10.1109/BigData59044.2023.10386910(2937-2941)Online publication date: 15-Dec-2023
    • (2022)Evaluating Complex Queries on Streaming Graphs2022 IEEE 38th International Conference on Data Engineering (ICDE)10.1109/ICDE53745.2022.00025(272-285)Online publication date: May-2022
    • (2022)An Algebra Supporting Semantic Query for Graph Data Model2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE)10.1109/ICCECE54139.2022.9712796(838-841)Online publication date: 14-Jan-2022
    • (2022)Research on storage method for fuzzy RDF graph based on Neo4jEvolutionary Intelligence10.1007/s12065-022-00715-017:1(429-439)Online publication date: 8-Apr-2022
    • (2022)Persistence of Fuzzy RDF and Fuzzy RDF SchemaModeling and Management of Fuzzy Semantic RDF Data10.1007/978-3-031-11669-8_4(109-150)Online publication date: 9-Sep-2022
    • (2021)Recursion in SPARQLSemantic Web10.3233/SW-20040112:5(711-740)Online publication date: 1-Jan-2021
    • (2021)Practical and comprehensive formalisms for modelling contemporary graph query languagesInformation Systems10.1016/j.is.2021.101816102:COnline publication date: 1-Dec-2021
    • (2021)RDF for temporal data management – a surveyEarth Science Informatics10.1007/s12145-021-00574-w14:2(563-599)Online publication date: 8-Mar-2021
    • (2020)Semantic Region Retrieval from Spatial RDF DataDatabase Systems for Advanced Applications10.1007/978-3-030-59416-9_25(415-431)Online publication date: 24-Sep-2020
    • (2019)A Schema-First Formalism for Labeled Property Graph DatabasesProceedings of the 6th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies10.1145/3365109.3368782(71-80)Online publication date: 2-Dec-2019
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media