Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Robust attitude estimation of rotating space debris based on virtual observations of neural network

Published: 08 February 2022 Publication History

Summary

High precise estimation and prediction of the target's attitude motion are key technologies for capturing and removing rotating space debris. In this article, a neural‐network‐enhanced Kalman filter (NNEKF) is proposed to improve the precision and robustness of attitude estimation algorithm. The main innovation of the NNEKF is to utilize virtual observations of the inertia characteristics to improve the filter's performances. The virtual observations are obtained using a neural network, which is offline trained using simulation data. In order to decrease the number of nodes of the network, the input data are preprocessed using the discrete Fourier transformation method. Moreover, by involving the characteristic frequencies in the input vector, the neural network can extract information from all the past observations, so as to grasp long‐term characteristics of the dynamical system. Therefore, the NNEKF can provide more precise estimation of the target's moment of inertia, and furthermore improve the accuracy and robustness of attitude estimation and prediction. Simulation results indicate that the NNEKF can reduce the estimation errors by 39% compared with the conventional EKF method when using the same measurement data. And the accumulation errors of prediction using estimates of the NNEKF is just as 24% as the conventional EKF.

References

[1]
Kirchner G, Koidl F, Friederich F, Buske I, Völker U, Riede W. Laser measurements to space debris from Graz SLR station. Adv Space Res. 2013;51(1):21‐24.
[2]
Gong B, Li S, Yang Y, Shi J, Li W. Maneuver‐free approach to range‐only initial relative orbit determination for spacecraft proximity operations. Acta Astronaut. 2019;163:87‐95.
[3]
Schildknecht T. Optical surveys for space debris. Astron Astrophys Rev. 2007;14(1):41‐111.
[4]
Luzi AR, Peaucelle D, Biannic JM, Pittet C, Mignot J. Structured adaptive attitude control of a satellite. Int J Adapt Control Signal Process. 2014;28(7‐8):664‐685.
[5]
Gong B, Li W, Li S, Ma W, Zheng L. Angles‐only initial relative orbit determination algorithm for non‐cooperative spacecraft proximity operations. Astrodynamics. 2018;2(3):217‐231.
[6]
Hu H, Mao X, Zhu Z, Wei C, He Y. A vision system for autonomous satellite grapple with attitude thruster. Paper presented at: Proceedings of the 2014 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO), IEEE, Vienna, Austria; 2014;2:333‐337.
[7]
Du X, Liang B, Xu W, Qiu Y. Pose measurement of large non‐cooperative satellite based on collaborative cameras. Acta Astronaut. 2011;68(11‐12):2047‐2065.
[8]
Aghili F, Su CY. Robust relative navigation by integration of ICP and adaptive Kalman filter using laser scanner and IMU. IEEE/ASME Trans Mechatron. 2016;21(4):2015‐2026.
[9]
Lim TW. Point cloud modeling using the homogeneous transformation for non‐cooperative pose estimation. Acta Astronaut. 2015;111:61‐76.
[10]
Gong B, Li S, Shi J, Yang Y. Rotation based analytic range‐only initial relative orbit solution for natural periodic motion. Acta Astronaut. 2021;178:584‐594.
[11]
Crassidis JL, Markley FL, Cheng Y. Survey of nonlinear attitude estimation methods. J Guid Control Dyn. 2007;30(1):12‐28.
[12]
Hajiyev C, Soken HE. Robust adaptive unscented Kalman filter for attitude estimation of pico satellites. Int J Adapt Control Signal Process. 2014;28(2):107‐120.
[13]
Hou X, Yuan J, Ma C, Sun C. Parameter estimations of uncooperative space targets using novel mixed artificial neural network. Neurocomputing. 2019;339:232‐244.
[14]
Al‐Sharman MK, Zweiri Y, Jaradat MAK, Al‐Husari R, Gan D, Seneviratne LD. Deep‐learning‐based neural network training for state estimation enhancement: application to attitude estimation. IEEE Trans Instrum Meas. 2019;69(1):24‐34.
[15]
Ma C, Yuan J, Che D. Characteristic frequency input neural network for inertia identification of tumbling space target. Paper presented at: Proceedings of the International Conference on Intelligent Robotics and Applications; 2019:174‐187; Springer, New York, NY.
[16]
Harris FJ. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE. 1978;66(1):51‐83.
[17]
Hotchkiss C, Weber ES. A fast Fourier transform for fractal approximations. Excursions in Harmonic Analysis. New York, NY: Springer; 2017;5:315‐329.
[18]
Cooley JW, Lewis PA, Welch PD. The fast Fourier transform and its applications. IEEE Trans Educ. 1969;12(1):27‐34.
[19]
Van Loan C. Computational Frameworks for the Fast Fourier Transform. Philadelphia, PA: SIAM; 1992.
[20]
Ma C, Wei C, Yuan J. Semisynchronizing strategy for capturing a high‐speed tumbling target. J Guid Control Dyn. 2018;41(12):2615‐2632.
[21]
Ma C, Dai H, Yuan J. Estimation of inertial characteristics of tumbling spacecraft using constant state filter. Adv Space Res. 2017;60(3):513‐530.
[22]
Haykin S. Kalman Filtering and Neural Networks. Vol 47. Hoboken, NJ: John Wiley & Sons; 2004.
[23]
Haykin SS. Neural Networks and Learning Machines. Ontario Canada: Simon Haykin; 2009.
[24]
Leffens E, Markley FL, Shuster MD. Kalman filtering for spacecraft attitude estimation. J Guid Control Dyn. 1982;5(5):417‐429.
[25]
Pittelkau ME. Kalman filtering for spacecraft system alignment calibration. J Guid Control Dyn. 2001;24(6):1187‐1195.
[26]
O'Connor M, Tweddle B, Katz J, Saenz‐Otero A, Miller D, Makowka K. Visual‐inertial estimation and control for inspection of a tumbling spacecraft: experimental results from the international space station. Paper presented at: Proceedings of the AIAA Guidance, Navigation, and Control Conference; Minneapolis, Minnesota, US, 2012;2:4701.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image International Journal of Adaptive Control and Signal Processing
International Journal of Adaptive Control and Signal Processing  Volume 36, Issue 2
February 2022
237 pages
ISSN:0890-6327
EISSN:1099-1115
DOI:10.1002/acs.v36.2
Issue’s Table of Contents

Publisher

John Wiley & Sons, Inc.

United States

Publication History

Published: 08 February 2022

Author Tags

  1. adaptive attitude estimation
  2. information fusion
  3. neural network
  4. space debris

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Oct 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media