Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Integrating neurophysiologic relevance feedback in intent modeling for information retrieval

Published: 02 August 2019 Publication History

Abstract

The use of implicit relevance feedback from neurophysiology could deliver effortless information retrieval. However, both computing neurophysiologic responses and retrieving documents are characterized by uncertainty because of noisy signals and incomplete or inconsistent representations of the data. We present the first‐of‐its‐kind, fully integrated information retrieval system that makes use of online implicit relevance feedback generated from brain activity as measured through electroencephalography (EEG), and eye movements. The findings of the evaluation experiment (N = 16) show that we are able to compute online neurophysiology‐based relevance feedback with performance significantly better than chance in complex data domains and realistic search tasks. We contribute by demonstrating how to integrate in interactive intent modeling this inherently noisy implicit relevance feedback combined with scarce explicit feedback. Although experimental measures of task performance did not allow us to demonstrate how the classification outcomes translated into search task performance, the experiment proved that our approach is able to generate relevance feedback from brain signals and eye movements in a realistic scenario, thus providing promising implications for future work in neuroadaptive information retrieval (IR).

References

[1]
Acqualagna, L., Botrel, L., Vidaurre, C., Kübler, A., & Blankertz, B. (2016). Large‐scale assessment of a fully automatic co‐adaptive motor imagery‐based brain computer interface. PLoS One, 11(2), e0148886. https://doi.org/10.1371/journal.pone.0148886
[2]
Agrawal, S., & Goyal, N. (2013). Thompson Sampling for Contextual Bandits with Linear Payoffs. In Proceedings of the 30th International Conference on Machine Learning (pp. 127–135). PMLR.
[3]
Allegretti, M., Moshfeghi, Y., Hadjigeorgieva, M., Pollick, F. E., Jose, J. M., & Pasi, G. (2015). When relevance judgement is happening?: An EEG‐based study. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 719–722).
[4]
Allison, B., Luth, T., Valbuena, D., Teymourian, A., Volosyak, I., & Graser, A. (2010). BCI demographics: How many (and what kinds of) people can use an SSVEP BCI? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(2), 107–116.
[5]
Arapakis, I., Athanasakos, K., & Jose, J.M. (2010). A comparison of general vs personalised affective models for the prediction of topical relevance. In Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 371–378). New York, NY: ACM. https://doi.org/10.1145/1835449.1835512
[6]
Arapakis, I., Konstas, I., & Jose, J.M. (2009). Using facial expressions and peripheral physiological signals as implicit indicators of topical relevance. In Proceedings of the 17th ACM International Conference on Multimedia (pp. 461–470). New York, NY: ACM. https://doi.org/10.1145/1631272.1631336
[7]
Attias, H. (1999). Inferring parameters and structure of latent variable models by variational bayes. In Proceedings of the fifteenth conference on uncertainty in artificial intelligence (pp. 21–30). San Francisco, CA: Morgan Kaufmann Publishers Inc.
[8]
Baccino, T., & Manunta, Y. (2005). Eye‐fixation‐related potentials: Insight into parafoveal processing. Journal of Psychophysiology, 19(3), 204–215.
[9]
Barral, O., Eugster, M.J., Ruotsalo, T., Spapé, M.M., Kosunen, I., Ravaja, N., … Jacucci, G. (2015). Exploring peripheral physiology as a predictor of perceived relevance in information retrieval. In Proceedings of the 20th International Conference on Intelligent User Interfaces (pp. 389–399). New York, NY: ACM. https://doi.org/10.1145/2678025.2701389
[10]
Barral, O., Kosunen, I., & Jacucci, G. (2017). No need to laugh out loud: Predicting humor appraisal of comic strips based on physiological signals in a realistic environment. ACM Transactions on Computer‐Human Interaction, 24(6), 40. Retrieved from http://doi.acm.org/10.1145/3157730. https://doi.org/10.1145/3157730
[11]
Barral, O., Kosunen, I., Ruotsalo, T., Spapé, M.M., Eugster, M.J.A., Ravaja, N., … Jacucci, G. (2016). Extracting relevance and affect information from physiological text annotation. User Modeling and User‐Adapted Interaction, 26(5), 493–520. https://doi.org/10.1007/s11257-016-9184-8
[12]
Blankertz, B., Lemm, S., Treder, M., Haufe, S., & Müller, K.‐R. (2011). Single‐trial analysis and classification of ERP components – A tutorial. NeuroImage, 56(2), 814–825. https://doi.org/10.1016/j.neuroimage.2010.06.048
[13]
Blankertz, B., Sannelli, C., Halder, S., Hammer, E.M., Kübler, A., Müller, K.‐R., … Dickhaus, T. (2010). Neurophysiological predictor of SMR‐based BCI performance. NeuroImage, 51(4), 1303–1309. https://doi.org/10.1016/j.neuroimage.2010.03.022
[14]
Cowley, B., Filetti, M., Lukander, K., Torniainen, J., Henelius, A., Ahonen, L., … Jacucci, G. (2016). The psychophysiology primer: A guide to methods and a broad review with a focus on human–computer interaction. Foundations and Trends[textregistered] in Human—Computer Interaction, 9(3‐4), 151–308. Retrieved from https://doi.org/10.1561/1100000065. https://doi.org/10.1561/1100000065
[15]
Daee, P., Pyykkö, J., Glowacka, D., & Kaski, S. (2016). Interactive intent modeling from multiple feedback domains. In Proceedings of the 21st International Conference on Intelligent User Interfaces (pp. 71–75). New York, NY: ACM. https://doi.org/10.1145/2856767.2856803
[16]
Eugster, M.J.A., Ruotsalo, T., Spapé, M.M., Barral, O., Ravaja, N., Jacucci, G., & Kaski, S. (2016). Natural brain‐information interfaces: Recommending information by relevance inferred from human brain signals. Scientific Reports, 6, 38580. https://doi.org/10.1038/srep38580
[17]
Eugster, M.J.A., Ruotsalo, T., Spapé, M.M., Kosunen, I., Barral, O., Ravaja, N., … Kaski, S. (2014). Predicting term‐relevance from brain signals. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval (pp. 425–434). New York, NY: ACM. https://doi.org/10.1145/2600428.2609594
[18]
Farwell, L.A., & Donchin, E. (1988). Talking off the top of your head: Toward a mental prosthesis utilizing event‐related brain potentials. Electroencephalography and clinical Neurophysiology, 70(6), 510–523.
[19]
Friedman, J.H. (1989). Regularized discriminant analysis. Journal of the American Statistical Association, 84(405), 165–175. https://doi.org/10.1080/01621459.1989.10478752
[20]
Golenia, J.‐E., Wenzel, M.A., & Blankertz, B. (2015). Live demonstrator of EEG and eye‐tracking input for disambiguation of image search results. In Symbiotic interaction (pp. 81–86). Cham: Springer. https://doi.org/10.1007/978-3-319-24917-9_8
[21]
Golenia, J.E., Wenzel, M.A., Bogojeski, M., & Blankertz, B. (2018). Implicit relevance feedback from electroencephalography and eye tracking in image search. Journal of Neural Engineering, 15(2), 026002. https://doi.org/10.1088/1741-2552/aa9999
[22]
Good, P. (2013). Permutation tests: a practical guide to resampling methods for testing hypotheses. Berlin/Heidelberg, Germany: Springer Science & Business Media.
[23]
Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., … Edlinger, G. (2009). How many people are able to control a p300‐based brain–computer interface (BCI)? Neuroscience Letters, 462(1), 94–98.
[24]
Gwizdka, J. (2014). Characterizing relevance with eye‐tracking measures. In Proceedings of the 5th Information Interaction in Context Symposium (pp. 58–67). New York, NY: ACM. https://doi.org/10.1145/2637002.2637011
[25]
Gwizdka, J., & Mostafa, J. (2015). NeuroIR 2015: SIGIR 2015 workshop on neuro‐physiological methods in IR research. In ACM SIGIR Forum (Vol. 49, pp. 83–88). ACM. https://doi.org/10.1145/2888422.2888435
[26]
Gwizdka, J., & Mostafa, J. (2017). NeuroIIR: Challenges in bringing neuroscience to research in human‐information interaction. In Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval ‐ CHIIR ’17 (pp. 437–438). New York, NY: ACM Press. https://doi.org/10.1145/3020165.3022165
[27]
Jacucci, G., Fairclough, S., & Solovey, E.T. (2015). Physiological computing. Computer, 48(10), 12–16. Retrieved from http://ieeexplore.ieee.org/document/7310960/. https://doi.org/10.1109/MC.2015.291
[28]
Kangasrääsiö, A., Chen, Y., Glowacka, D., & Kaski, S. (2016). Interactive modeling of concept drift and errors in relevance feedback. In Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization (pp. 185–193). New York, NY: ACM. https://doi.org/10.1145/2930238.2930243
[29]
Kauppi, J.‐P., Kandemir, M., Saarinen, V.‐M., Hirvenkari, L., Parkkonen, L., Klami, A., … Kaski, S. (2015). Towards brain‐activity‐controlled information retrieval: Decoding image relevance from MEG signals. NeuroImage, 112, 288–298. https://doi.org/10.1016/j.neuroimage.2014.12.079
[30]
Kelly, D., & Fu, X. (2006). Elicitation of term relevance feedback: An investigation of term source and context. In Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 453–460). New York, NY: ACM. https://doi.org/10.1145/1148170.1148249
[31]
Kelly, D., & Teevan, J. (2003). Implicit feedback for inferring user preference: A bibliography. SIGIR Forum, 37(2), 18–28. https://doi.org/10.1145/959258.959260
[32]
Ledoit, O., & Wolf, M. (2004). A well‐conditioned estimator for large‐dimensional covariance matrices. Journal of Multivariate Analysis, 88(2), 365–411. https://doi.org/10.1016/S0047-259X(03)00096-4
[33]
Lemm, S., Blankertz, B., Dickhaus, T., & Müller, K.‐R. (2011). Introduction to machine learning for brain imaging. Neuroimage, 56(2), 387–399.
[34]
Moshfeghi, Y., & Jose, J.M. (2013). An effective implicit relevance feedback technique using affective, physiological and behavioural features. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 133–142). New York, NY: ACM. https://doi.org/10.1145/2484028.2484074
[35]
Moshfeghi, Y., Pinto, L.R., Pollick, F.E., & Jose, J.M. (2013). Understanding relevance: An fMRI study. In European Conference on Information Retrieval (pp. 14–25). Berlin, Heidelberg: Springer.
[36]
Mostafa, J., & Gwizdka, J. (2016). Deepening the role of the user: Neuro‐physiological evidence as a basis for studying and improving search. In Proceedings of the 2016 ACM on Conference on Human Information Interaction and Retrieval (pp. 63–70). New York, USA; ACM.
[37]
Nijholt, A., Tan, D., Pfurtscheller, G., Brunner, C., Millán, J.d.R., Allison, B., … Müller, K.R. (2008). Brain‐computer interfacing for intelligent systems. IEEE Intelligent Systems, 23(3), 72–79. https://doi.org/10.1109/MIS.2008.41
[38]
Oliveira, F.T., Aula, A., & Russell, D.M. (2009). Discriminating the relevance of web search results with measures of pupil size. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 2209–2212). New York, NY: ACM. https://doi.org/10.1145/1518701.1519038
[39]
Puolamäki, K., Salojärvi, J., Savia, E., Simola, J., & Kaski, S. (2005). Combining eye movements and collaborative filtering for proactive information retrieval. In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 146–153). New York, USA; ACM.
[40]
Ruotsalo, T., Jacucci, G., Myllymäki, P., & Kaski, S. (2015). Interactive intent modeling: Information discovery beyond search. Communications of the ACM, 58(1), 86–92.
[41]
Ruotsalo, T., Peltonen, J., Eugster, M., Głowacka, D., Konyushkova, K., Athukorala, K., et al. (2013). Directing exploratory search with interactive intent modeling. In Proceedings of the 22nd ACM International Conference on Conference on Information & Knowledge Management (pp. 1759–1764). New York, USA; ACM.
[42]
Schäfer, J., & Strimmer, K. (2005). A shrinkage approach to large‐scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4(1). Article 32. https://doi.org/10.2202/1544-6115.1175
[43]
Treder, M.S., Schmidt, N.M., & Blankertz, B. (2011). Gaze‐independent brain–computer interfaces based on covert attention and feature attention. Journal of Neural Engineering, 8(6), 066003.
[44]
Wenzel, M.A., Bogojeski, M., & Blankertz, B. (2017). Real‐time inference of word relevance from electroencephalogram and eye gaze. Journal of Neural Engineering, 14(5), 056007. https://doi.org/10.1088/1741-2552/aa7590
[45]
Wenzel, M.A., Golenia, J.‐E., & Blankertz, B. (2016). Classification of eye fixation related potentials for variable stimulus saliency. Frontiers in Neuroscience, 10, 23. Retrieved from https://www.frontiersin.org/article/10.3389/fnins.2016.00023. https://doi.org/10.3389/fnins.2016.00023
[46]
Zhu, X., & Davidson, I. (2007). Knowledge discovery and data mining: Challenges and realities. Hershey, PA: IGI Global.

Cited By

View all
  • (2023)Understanding Feeling-of-Knowing in Information Search: An EEG StudyACM Transactions on Information Systems10.1145/361138442:3(1-30)Online publication date: 30-Oct-2023
  • (2023)Affective Relevance: Inferring Emotional Responses via fNIRS NeuroimagingProceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3539618.3591946(1796-1800)Online publication date: 19-Jul-2023
  • (2023)Brain-Computer Interface for Generating Personally Attractive ImagesIEEE Transactions on Affective Computing10.1109/TAFFC.2021.305904314:1(637-649)Online publication date: 1-Jan-2023
  • Show More Cited By

Index Terms

  1. Integrating neurophysiologic relevance feedback in intent modeling for information retrieval
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Journal of the Association for Information Science and Technology
          Journal of the Association for Information Science and Technology  Volume 70, Issue 9
          September 2019
          136 pages
          ISSN:2330-1635
          EISSN:2330-1643
          DOI:10.1002/asi.v70.9
          Issue’s Table of Contents
          This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

          Publisher

          John Wiley & Sons, Inc.

          United States

          Publication History

          Published: 02 August 2019

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 30 Aug 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2023)Understanding Feeling-of-Knowing in Information Search: An EEG StudyACM Transactions on Information Systems10.1145/361138442:3(1-30)Online publication date: 30-Oct-2023
          • (2023)Affective Relevance: Inferring Emotional Responses via fNIRS NeuroimagingProceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3539618.3591946(1796-1800)Online publication date: 19-Jul-2023
          • (2023)Brain-Computer Interface for Generating Personally Attractive ImagesIEEE Transactions on Affective Computing10.1109/TAFFC.2021.305904314:1(637-649)Online publication date: 1-Jan-2023
          • (2023)What Song Am I Thinking Of?Machine Learning, Optimization, and Data Science10.1007/978-3-031-53966-4_31(418-432)Online publication date: 22-Sep-2023
          • (2022)Towards a Better Understanding of Human Reading Comprehension with Brain SignalsProceedings of the ACM Web Conference 202210.1145/3485447.3511966(380-391)Online publication date: 25-Apr-2022
          • (2022)Information Need AwarenessProceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3477495.3531999(610-621)Online publication date: 6-Jul-2022
          • (2021)Entity Recommendation for Everyday Digital TasksACM Transactions on Computer-Human Interaction10.1145/345891928:5(1-41)Online publication date: 20-Aug-2021
          • (2020)Brain Relevance Feedback for Interactive Image GenerationProceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology10.1145/3379337.3415821(1060-1070)Online publication date: 20-Oct-2020
          • (2020)Brainsourcing: Crowdsourcing Recognition Tasks via Collaborative Brain-Computer InterfacingProceedings of the 2020 CHI Conference on Human Factors in Computing Systems10.1145/3313831.3376288(1-14)Online publication date: 21-Apr-2020
          • (2019)Introduction to the special issue on neuro‐information scienceJournal of the Association for Information Science and Technology10.1002/asi.2426370:9(911-916)Online publication date: 2-Aug-2019

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media