Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Joint bit and power loading for adaptive MIMO OFDM VLC systems

Published: 08 July 2020 Publication History

Abstract

Visible light communication (VLC) is a short‐range wireless access technology based on the dual use of illumination structure. The frequency‐selective characteristics of VLC channels motivate the use of orthogonal frequency division multiplexing (OFDM). In addition, the presence of multiple light sources in most indoor spaces makes multiple‐input–multiple‐output (MIMO) communication techniques a natural solution for VLC systems. In this paper, we investigate the design of an adaptive MIMO OFDM system. Specifically, we propose adaptive bit and power loading for a direct current–biased OFDM VLC system with MIMO mode switching between repetition coding and spatial multiplexing. We formulate the adaptive algorithm design as an optimization problem where we aim to maximize spectral efficiency through the proper selection of modulation order, power level, and MIMO mode, while satisfying a targeted bit error rate. To solve the underlying NP‐hard problems, we use a simulated annealing heuristic. We present Monte Carlo simulation results for a typical indoor setting and illustrate the performance improvements through link adaptation.

Graphical Abstract

We propose an adaptive DCO‐OFDM system that maximizes spectral efficiency (SE) by applying the following steps. The first is the optimization of the power of the subcarriers using the Simulated Annealing algorithm. In the second and third steps, the system selects best modulation orders for the subcarriers based on a given BER value and determine SE value for both repetitive coding (RC) and spatial multiplexing (SM) modes. The system chooses either RC or SM mode, whichever yields better SE.

References

[1]
Arnon S, Barry J, Karagiannidis G, Schober R, Uysal M. Advanced Optical Wireless Communication Systems. Cambridge, UK: Cambridge University Press; 2012.
[2]
Rajagopal S, Roberts RD, Lim S‐K. IEEE 802.15.7 visible light communication: modulation schemes and dimming support. IEEE Commun Mag. 2012;50(3):72‐82.
[3]
Armstrong J. OFDM for optical communications. J Light Technol. 2009;27(3):189‐204.
[4]
Armstrong J, Lowery AJ. Power efficient optical OFDM. Electronics Letters. 2006;42(6):370‐372.
[5]
Tsonev D, Sinanovic S, Haas H. Novel unipolar orthogonal frequency division multiplexing (U‐OFDM) for optical wireless. Paper presented at: 2012 IEEE 75th Vehicular Technology Conference (VTC Spring); 2012; Yokohama, Japan.
[6]
Fernando N, Hong Y, Viterbo E. Flip‐OFDM for unipolar communication systems. IEEE Trans Commun. 2012;60(12):3726‐3733.
[7]
Tsonev D, Videv S, Haas H. Unlocking spectral efficiency in intensity modulation and direct detection systems. IEEE J Sel Areas Commun. 2015;33(9):1758‐1770.
[8]
Ulema M, Romano G, Nagata S, et al. Standards news. IEEE Commun Stand Mag. 2017;1(3):13‐19.
[9]
Tsonev D, Serafimovski N. Low‐bandwidth LiFi PHY & MAC. doc: IEEE 802.15‐16/0363r0. 2016. https://mentor.ieee.org/802.15/dcn/16/15-16-0363-00-007a-text-input-lifi-low-bandwidth-phy-and-mac-d0.docx. Accessed June 10, 2017.
[10]
Jungnickel V. High‐bandwidth PHY. doc: IEEE 802.15‐16/0356r0. 2016. https://mentor.ieee.org/802.15/dcn/16/15-16-0356-00-007a-text-input-for-high-bandwidth-phy.docx. Accessed June 10, 2017.
[11]
Heath RW Jr, Lozano A. Foundations of MIMO Communication. Cambridge, UK: Cambridge University Press; 2018.
[12]
Jafarkhani H. Space‐Time Coding: Theory and Practice. Cambridge, UK: Cambridge University Press; 2005.
[13]
Telatar E. Capacity of multi‐antenna Gaussian channels. Eur Trans Telecommun. 1999;10(6):585‐595.
[14]
Zheng L, Tse DNC. Diversity and multiplexing: a fundamental tradeoff in multiple‐antenna channels. IEEE Trans Inf Theory. 2003;49(5):1073‐1096.
[15]
Fath T, Haas H. Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Trans Commun. 2013;61(2):733‐742.
[16]
Wang Q, Wang Z, Dai L. Multiuser MIMO‐OFDM for visible light communications. IEEE Photonics J. 2015;7(6):1‐11.
[17]
Damen MO, Narmanlioglu O, Uysal M. Comparative performance evaluation of MIMO visible light communication systems. Paper presented at: 2016 24th Signal Processing and Communication Application Conference (SIU); 2016; Zonguldak, Turkey.
[18]
Yesilkaya A, Basar E, Miramirkhani F, Panayirci E, Uysal M, Haas H. Optical MIMO‐OFDM with generalized LED index modulation. IEEE Trans Commun. 2017;65(8):3429‐3441.
[19]
Chen C, Zhong W‐D, Wu D. Non‐Hermitian symmetry orthogonal frequency division multiplexing for multiple‐input multiple‐output visible light communications. IEEE/OSA J Opt Commun Netw. 2017;9(1):36‐44.
[20]
He C, Wang TQ, Armstrong J. Performance of optical receivers using photodetectors with different fields of view in a MIMO ACO‐OFDM system. J Light Technol. 2015;33(23):4957‐4967.
[21]
Wei L, Zhang H, Song J. Experimental demonstration of a cubic‐receiver‐based MIMO visible light communication system. IEEE Photonics J. 2017;9(1):1‐7.
[22]
Azhar AH, Tran T‐A, O'Brien D. Demonstration of high‐speed data transmission using MIMO‐OFDM visible light communications. Paper presented at: 2010 IEEE Globecom Workshops; 2010; Miami, FL.
[23]
Azhar AH, Tran T‐A, O'Brien D. A gigabit/s indoor wireless transmission using MIMO‐OFDM visible‐light communications. IEEE Photonics Technol Lett. 2013;25(2):171‐174.
[24]
He C, Wang TQ, Armstrong J. Performance comparison between spatial multiplexing and spatial modulation in indoor MIMO visible light communication systems. Paper presented at: 2016 IEEE International Conference on Communications (ICC); 2016; Kuala Lumpur, Malaysia.
[25]
Hong Y, Chen L‐K. Performance investigation of OCT precoding for MIMO‐OFDM based indoor visible light communications. Paper presented at: 2016 18th International Conference on Transparent Optical Networks (ICTON); 2016; Trento, Italy.
[26]
Turan B, Narmanlioglu O, Ergen SC, Uysal M. On the performance of MIMO OFDM‐based intra‐vehicular VLC networks. Paper presented at: 2016 IEEE 84th Vehicular Technology Conference (VTC‐Fall); 2016; Montreal, Canada.
[27]
Turan B, Narmanlioglu O, Ergen SC, Uysal M. Broadcasting brake lights with MIMO‐OFDM based vehicular VLC. Paper presented at: 2016 IEEE Vehicular Networking Conference (VNC); 2016; Columbus, OH.
[28]
Chen C, Zhong W‐D, Yang H, Du P. On the performance of MIMO‐NOMA‐based visible light communication systems. IEEE Photonics Technol Lett. 2018;30(4):307‐310.
[29]
Feng Z, Guo C, Ghassemlooy Z, Yang Y. The spatial dimming scheme for the MU‐MIMO‐OFDM VLC system. IEEE Photonics J. 2018;10(5):1‐13.
[30]
Narmanlioglu O, Kizilirmak RC, Miramirkhani F, Safaraliev S, Sait SM, Uysal M. Effect of wiring and cabling topologies on the performance of distributed MIMO OFDM VLC systems. IEEE Access. 2019;7:52743‐52754.
[31]
Van den Bogaert E, Bostoen T, Van Elsen J, Cendrillon R, Moonen M. DSM in practice: iterative water‐filling implemented on ADSL modems. Paper presented at: 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing; 2004; Montreal, Canada.
[32]
Liang Y‐C, Zhang R, Cioffi JM. Sub‐channel grouping and statistical water‐filling for MIMO‐OFDM systems. Paper presented at: the Thirty‐Seventh Asilomar Conference on Signals, Systems & Computers; 2003; Pacific Grove, CA.
[33]
Codreanu M, Tujkovic D, Latva‐aho M. Adaptive MIMO‐OFDM systems with channel state information at TX side. Paper presented at: IEEE International Conference on Communications; 2005; Seoul, South Korea.
[34]
Krongold BS, Ramchandran K, Jones DL. Computationally efficient optimal power allocation algorithms for multicarrier communication systems. IEEE Trans Commun. 2000;48(1):23‐27.
[35]
Zhang H, Fu J, Song J. A Hughes‐Hartogs algorithm based bit loading algorithm for OFDM systems. Paper presented at: 2010 IEEE International Conference on Communications; 2010; Cape Town, South Africa.
[36]
Wu L, Zhang Z, Dang J, Liu H. Adaptive modulation schemes for visible light communications. J Light Technol. 2015;33(1):117‐125.
[37]
Vucic J, Kottke C, Nerreter S, Langer K‐D, Walewski JW. 513 Mbit/s visible light communications link based on DMT‐modulation of a white LED. J Light Technol. 2010;28(24):3512‐3518.
[38]
Berenguer PW, Jungnickel V, Fischer JK. The benefit of frequency‐selective rate adaptation for optical wireless communications. Paper presented at: 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP); 2016; Prague, Czech Republic.
[39]
Wang M, Wu J, Yu W, et al. Efficient coding modulation and seamless rate adaptation for visible light communications. IEEE Wirel Commun. 2015;22(2):86‐93.
[40]
He J, He J, Shi J. An enhanced adaptive scheme with pairwise coding for OFDM‐VLC system. IEEE Photonics Technol Lett. 2018;30(13):1254‐1257.
[41]
Hong Y, Wu T, Chen L‐K. On the performance of adaptive MIMO‐OFDM indoor visible light communications. IEEE Photonics Technol Lett. 2016;28(8):907‐910.
[42]
Park K‐H, Ko Y‐C, Alouini M‐S. On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels. IEEE Trans Commun. 2013;61(4):1535‐1543.
[43]
Wang J‐Y, Zhu J‐X, Lin S‐H, Wang J‐B. Adaptive spatial modulation based visible light communications: SER analysis and optimization. IEEE Photonics J. 2018;10(3):1‐14.
[44]
Mmbaga PF, Thompson J, Haas H. Performance analysis of indoor diffuse VLC MIMO channels using angular diversity detectors. J Light Technol. 2016;34(4):1254‐1266.
[45]
Narmanlioglu O, Kizilirmak RC, Baykas T, Uysal M. Link adaptation for MIMO OFDM visible light communication systems. IEEE Access. 2017;5:26006‐26014.
[47]
PureLiFi . LiFi‐XC. https://purelifi.com/say-hello-to-the-lifi-xc/lifi-xc/. Accessed August 07, 2019.
[48]
Cho K, Yoon D. On the general BER expression of one‐ and two‐dimensional amplitude modulations. IEEE Trans Commun. 2002;50(7):1074‐1080.
[49]
Li D, Sun X. Nonlinear Integer Programming. Berlin, Germany: Springer; 2006. https://EconPapers.repec.org/RePEc:spr:isorms:978-0-387-32995-6
[50]
Chen D‐S, Batson RG, Dang Y. Applied Integer Programming: Modeling and Simulation. Hoboken, NJ: John Wiley & Sons, Inc; 2010.
[51]
Sait SM, Youssef H. Iterative Computer Algorithms With Applications in Engineering: Solving Combinatorial Optimization Problems. 1st ed. Los Alamitos, CA: IEEE Computer Society Press; 1999.
[52]
Sait SM, Youssef H. VLSI Physical Design Automation: Theory and Practice. Singapore: World Scientific Publishers; 1999.
[53]
Avila‐George H, Torres‐Jimenez J, Izquierdo‐Marquez I. Improved pairwise test suites for non‐prime‐power orders. IET Software. 2018;12(3):215‐224.
[54]
Lin S‐W, Huang C‐Y, Ying K‐C, Chen D‐L. Decreasing the system testing makespan in a computer manufacturing company. IEEE Access. 2018;6:16464‐16473.
[55]
Ning M, He Z, Wang N, Liu R. Metaheuristic algorithms for proactive and reactive project scheduling to minimize contractor's cash flow gap under random activity duration. IEEE Access. 2018;6:30547‐30558.
[56]
Siddiqi UF, Sait SM, Demir MS, Uysal M. Resource allocation for visible light communication systems using simulated annealing based on a problem‐specific neighbor function. IEEE Access. 2019;7:64077‐64091.
[57]
Wong KP, Wong YW. Hybrid genetic/simulated annealing approach to short‐term multiple‐fuel‐constrained generation scheduling. IEEE Trans Power Syst. 1997;12(2):776‐784.
[58]
Wang C, Zhao F, Mu D, Sutherland JW. Simulated annealing for a vehicle routing problem with simultaneous pickup‐delivery and time windows. In: Prabhu V, Taisch M, Kiritsis D, eds. Advances in Production Management Systems. Sustainable Production and Service Supply Chains: IFIP WG 5.7 International Conference, APMS 2013, State College, PA, USA, September 9‐12, 2013, Proceedings, Part II. Berlin, Germany: Springer; 2013:170‐177.
[59]
Mendivil F, Shonkwiler R, Spruill MC. Restarting search algorithms with applications to simulated annealing. Adv Appl Probab. 2001;33(1):242‐259. http://www.jstor.org/stable/1428450
[60]
Grubor J, Randel S, Langer KD, Walewski JW. Broadband information broadcasting using LED‐based interior lighting. J Light Technol. 2008;26(24):3883‐3892.

Cited By

View all
  • (2022)Variable pulse position modulation receivers for visible light communication systems without the knowledge of dimming levelTransactions on Emerging Telecommunications Technologies10.1002/ett.444533:5Online publication date: 27-May-2022
  • (2022)BER performance of MIMO based NOMA‐VLC system with imperfect SICTransactions on Emerging Telecommunications Technologies10.1002/ett.442233:4Online publication date: 17-Apr-2022
  • (2022)MobiScanTransactions on Emerging Telecommunications Technologies10.1002/ett.415133:4Online publication date: 17-Apr-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Transactions on Emerging Telecommunications Technologies
Transactions on Emerging Telecommunications Technologies  Volume 31, Issue 7
July 2020
201 pages
ISSN:2161-3915
EISSN:2161-3915
DOI:10.1002/ett.v31.7
Issue’s Table of Contents

Publisher

John Wiley & Sons, Inc.

United States

Publication History

Published: 08 July 2020

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Variable pulse position modulation receivers for visible light communication systems without the knowledge of dimming levelTransactions on Emerging Telecommunications Technologies10.1002/ett.444533:5Online publication date: 27-May-2022
  • (2022)BER performance of MIMO based NOMA‐VLC system with imperfect SICTransactions on Emerging Telecommunications Technologies10.1002/ett.442233:4Online publication date: 17-Apr-2022
  • (2022)MobiScanTransactions on Emerging Telecommunications Technologies10.1002/ett.415133:4Online publication date: 17-Apr-2022
  • (2020)Continuous phase modulation with chaotic interleaving for visible light communication systems based on orthogonal frequency division multiplexingTransactions on Emerging Telecommunications Technologies10.1002/ett.410031:10Online publication date: 5-Oct-2020

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media