Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Dual intelligent reflecting surfaces aided decode‐and‐forward relaying with wireless power transfer

Published: 15 January 2024 Publication History

Abstract

We consider an energy harvesting (EH)‐based cooperative relaying system, where the relay operates with EH and forwards source data to the destination according to the decode‐and‐forward protocol. Two intelligent reflecting surfaces (IRSs) are deployed to assist the EH of the first‐hop as well as the data transmissions of both hops. Along with the source transmitting data to the relay at the first‐hop, the first IRS reflects the incident signal to the relay, who can harvest energy and decode information from the received signal using power‐splitting or time‐switching method. After successfully decoding the source data, the relay will forward data to the destination by using the harvested energy with assistance from the second IRS. We analyze and derive the success probability, the throughput, and the ergodic capacity of the proposed scheme. Numerical results show that our proposed dual‐IRS‐aided relaying scheme can achieve much better performance than relay‐only and one‐IRS‐aided relaying schemes.

Graphical Abstract

A two‐hop dual‐IRS‐aided DF‐relaying scheme with the relay capable of harvesting wireless energy.

References

[1]
Wu Q, Zhang S, Zheng B, You C, Zhang R. Intelligent reflecting surface‐aided wireless communications: a tutorial. IEEE Trans Commun. 2021;69(5):3313‐3351.
[2]
Wu Q, Zhang R. Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun Mag. 2020;58(1):106‐112.
[3]
Zheng B, You C, Zhang R. Double‐IRS assisted multi‐user MIMO: Cooperative passive beamforming design. IEEE Trans Wirel Commun. 2021;20(7):4513‐4526.
[4]
Yue X, Liu Y. Performance analysis of intelligent reflecting surface assisted NOMA networks. IEEE Trans Wirel Commun. 2022;21(4):2623‐2636.
[5]
Cheng Y, Li KH, Liu Y, Teh KC, Vincent PH. Downlink and uplink intelligent reflecting surface aided networks: NOMA and OMA. IEEE Trans Wirel Commun. 2021;20(6):3988‐4000.
[6]
Zhou X, Zhang R, Ho CK. Wireless information and power transfer: Architecture design and rate‐energy tradeoff. IEEE Trans Commun. 2013;61(11):4754‐4767.
[7]
Xu D, Zhu H. Secure transmission for SWIPT IoT systems with full‐duplex IoT devices. IEEE Internet Things J. 2019;6(6):10915‐10933.
[8]
Sun X, Yang W, Cai Y, Xiang Z, Tang X. Secure transmissions in millimeter wave SWIPT UAV‐based relay networks. IEEE Wirel Commun Lett. 2019;8(3):785‐788.
[9]
Ashraf N, Sheikh SA, Khan SA, Shayea I, Jalal M. Simultaneous wireless information and power transfer with cooperative relaying for next‐generation wireless networks: A review. IEEE Access. 2021;9:71482‐71504.
[10]
Wu Q, Zhang R. Weighted sum power maximization for intelligent reflecting surface aided SWIPT. IEEE Wirel Commun Lett. 2020;9(5):586‐590.
[11]
Wu Q, Zhang R. Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT Under QoS constraints. IEEE J Sel Areas Commun. 2020;38(8):1735‐1748.
[12]
Liu J, Xiong K, Lu Y, Ng DWK, Zhong Z, Han Z. Energy efficiency in secure IRS‐aided SWIPT. IEEE Wirel Commun Lett. 2020;9(11):1884‐1888.
[13]
Gunasinghe D, Baduge GAA. Performance analysis of SWIPT for intelligent reflective surfaces for wireless communication. IEEE Commun Lett. 2021;25(7):2201‐2205.
[14]
Sun W, Song Q, Guo L, Zhao J. Secrecy rate maximization for intelligent reflecting surface aided SWIPT systems. IEEE International Conference on Communications in China. ICCC; 2020:1276‐1281.
[15]
Farhadi G, Beaulieu NC. Ergodic capacity of multi‐hop wireless relaying systems in rayleigh fading. In: IEEE Global Telecommun Conf. 2008:1‐6.
[16]
Nasir AA, Zhou X, Durrani S, Kennedy RA. Relaying protocols for wireless energy harvesting and information processing. IEEE Trans Wirel Commun. 2013;12(7):3622‐3636.
[17]
Björnson E, Özdogan Ö, Larsson E. Intelligent reflecting surface versus decode‐and‐forward: How large surfaces are needed to beat relaying? IEEE Wirel Commun Lett. 2020;9(2):244‐248.
[18]
Pan C, Ren H, Wang K, et al. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer. IEEE J Sel Areas Commun. 2020;38(8):1719‐1734.
[19]
Abdullah Z, Chen G, Lambotharan S, Chambers JA. A hybrid relay and intelligent reflecting surface network and its ergodic performance analysis. IEEE Wirel Commun Lett. 2020;9(10):1653‐1657.
[20]
Abdullah Z, Chen G, Lambotharan S, Chambers JA. Optimization of intelligent reflecting surface assisted full‐duplex relay networks. IEEE Wirel Commun Lett. 2021;10(2):363‐367.
[21]
Yildirim I, Kilinc F, Basar E, Alexandropoulos GC. Hybrid RIS‐empowered reflection and decode‐and‐forward relaying for coverage extension. IEEE Commun Lett. 2021;25(5):1692‐1696.
[22]
Sun Q, Qian P, Duan W, Zhang J, Wang J, Wong KK. Ergodic rate analysis and IRS configuration for multi‐IRS dual‐hop DF relaying systems. IEEE Commun Lett. 2021;25(10):3224‐3228.
[23]
Zheng B, Zhang R. IRS meets relaying: joint resource allocation and passive beamforming optimization. IEEE Wirel Commun Lett. 2021;10(9):2080‐2084.
[24]
Huang C, Chen G, Gong Y, Wen M, Chambers JA. Deep reinforcement learning‐based relay selection in intelligent reflecting surface assisted cooperative networks. IEEE Wirel Commun Lett. 2021;10(5):1036‐1040.
[25]
Do TN, Kaddoum G, Nguyen TL, da Costa DB, Haas ZJ. Multi‐RIS‐aided wireless systems: statistical characterization and performance analysis. IEEE Trans Commun. 2021;69(12):8641‐8658.
[26]
Ju M, Kang KM, Hwang KS, Jeong C. Maximum transmission rate of PSR/TSR protocols in wireless energy harvesting DF‐based relay networks. IEEE J Sel Areas Commun. 2015;33(12):2701‐2717.
[27]
Basar E, Di Renzo M, De Rosny J, Debbah M, Alouini MS, Zhang R. Wireless communications through reconfigurable intelligent surfaces. IEEE Access. 2019;7:116753‐116773.
[28]
Zhai C, Chen H, Wang X, Liu J. Opportunistic spectrum sharing with wireless energy transfer in stochastic networks. IEEE Trans Commun. 2018;66(3):1296‐1308.
[29]
Zhai C, Zheng L, Yu Z. Cognitive spectrum access with energy harvesting primary user and best secondary user selection. Trans Emerg Telecommun Technol. 2019;30(12):1‐11.
[30]
Proakis J, Salehi M. Digital Communications. 5th ed. McGraw‐Hill; 2008.
[31]
Boulogeorgos AAA, Alexiou A. Performance analysis of reconfigurable intelligent surface‐assisted wireless systems and comparison with relaying. IEEE Access. 2020;8:94463‐94483.

Index Terms

  1. Dual intelligent reflecting surfaces aided decode‐and‐forward relaying with wireless power transfer
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Transactions on Emerging Telecommunications Technologies
      Transactions on Emerging Telecommunications Technologies  Volume 35, Issue 1
      January 2024
      1099 pages
      EISSN:2161-3915
      DOI:10.1002/ett.v35.1
      Issue’s Table of Contents

      Publisher

      John Wiley & Sons, Inc.

      United States

      Publication History

      Published: 15 January 2024

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 28 Jan 2025

      Other Metrics

      Citations

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media