Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Spatial modeling of brain connectivity data via latent distance models with nodes clustering

Published: 20 May 2019 Publication History

Abstract

Brain network data—measuring structural interconnections among brain regions of interest—are increasingly collected for multiple individuals. Moreover, recent analyses provide additional information on the brain regions under study. These predictors typically include the three‐dimensional anatomical coordinates of the regions, and their membership to hemispheres and lobes. Although recent studies have explored the spatial effects underlying brain networks, there is still a lack of statistical analyses on the net connectivity structure which is not explained by the physical proximity of the brain regions. We answer this question via a predictor‐dependent latent space model for replicated brain network data which provides a meaningful representation for the net connectivity architecture via a set of latent positions having a mixture of Gaussians prior. This model allows for flexible inference on brain network patterns which are not explained by the anatomical structure, and facilitates clustering among brain regions according to local similarities in the latent space. Our findings offer novel insights on wiring mechanisms among subsets of brain regions which interestingly departs from the anatomical proximity structure.

References

[1]
E. M. Airoldi et al., Mixed membership stochastic blockmodels, J. Mach. Learn. Res. 9 (2008), 1981–2014.
[2]
E. Bullmore and O. Sporns, Complex brain networks: Graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci. 10(3) (2009), 186–198.
[3]
E. Bullmore and O. Sporns, The economy of brain network organization, Nat. Rev. Neurosci. 13 (2012), 336–349.
[4]
H. Choi and J. Hobert, The Polya‐Gamma Gibbs sampler for Bayesian logistic regression is uniformly ergodic, Electron. J. Stat. 7 (2013), 2054–2064.
[5]
R. Craddock et al., Imaging human connectomes at the macroscale, Nat. Methods 10 (2013), 524–539.
[6]
S. D'Angelo, T. B. Murphy, and M. Alfò, Latent space modeling of multidimensional networks with application to the exchange of votes in Eurovision song contest, arXiv preprint:1803.07166, 2018.
[7]
R. Desikan et al., An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, Neuroimage 31 (2006), 968–980.
[8]
D. Durante and D. B. Dunson, Bayesian inference and testing of group differences in brain networks, Bayesian Anal. 13(1) (2018), 29–58.
[9]
D. Durante, D. B. Dunson, and J. T. Vogelstein, Nonparametric Bayes modeling of populations of networks, J. Am. Stat. Assoc. 112(520) (2017), 1516–1530.
[10]
O. Frank and D. Strauss, Markov graphs, J. Am. Stat. Assoc. 81(395) (1986), 832–842.
[11]
A. E. Gelfand and A. F. Smith, Sampling‐based approaches to calculating marginal densities, J. Am. Stat. Assoc. 85(410) (1990), 398–409.
[12]
A. Gelman, G. Roberts, and W. Gilks, Efficient Metropolis jumping rules, Bayesian Stat. 5(42) (1996), 599–608.
[13]
A. Gelman et al., Using redundant parameterizations to fit hierarchical models, J. Comput. Graph. Stat. 17(1) (2008), 95–122.
[14]
A. Gelman et al., Bayesian Data Analysis, CRC Press, Boca Raton, FL, 2014.
[15]
I. Gollini and T. B. Murphy, Joint modeling of multiple network views, J. Comput. Graph. Stat. 25(1) (2016), 246–265.
[16]
M. Handcock, A. Raftery, and J. Tantrum, Model‐based clustering for social networks, J. R. Stat. Soc. A. Stat. Soc. 170(2) (2007), 301–354.
[17]
P. Hoff, Modeling homophily and stochastic equivalence in symmetric relational data, in Advances in Neural Information Processing Systems, J.C. Platt, D. Koller, Y. Singer, S.T. Roweis, Eds., MIT Press, Cambridge, 2008, 657–664.
[18]
P. Hoff, A. Raftery, and M. Handcock, Latent space approaches to social network analysis, J. Am. Stat. Assoc. 97(460) (2002), 1090–1098.
[19]
P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic blockmodels: First steps, Soc. Netw. 5(2) (1983), 109–137.
[20]
D. R. Hunter, P. N. Krivitsky, and M. Schweinberger, Computational statistical methods for social network models, J. Comput. Graph. Stat. 21(4) (2012), 856–882.
[21]
P. Krivitsky and M. Handcock, Fitting latent cluster models for networks with latentnet, J. Stat. Softw. 24(5) (2008), 1–23.
[22]
B. A. Landman et al., Multi‐parametric neuroimaging reproducibility: A 3‐T resource study, Neuroimage 54(4) (2011), 2854–2866.
[23]
K. Nowicki and T. A. B. Snijders, Estimation and prediction for stochastic blockstructures, J. Am. Stat. Assoc. 96(455) (2001), 1077–1087.
[24]
P. Papastamoulis, label.switching: An R package for dealing with the label switching problem in MCMC outputs, J. Stat. Softw. 69(1) (2016), 1–24.
[25]
N. Polson, J. Scott, and J. Windle, Bayesian inference for logistic models using pólya–gamma latent variables, J. Am. Stat. Assoc. 108(504) (2013), 1339–1349.
[26]
W. G. Roncal, et al., MIGRAINE: MRI graph reliability analysis and inference for connectomics. Global Conference on Signal and Information Processing, IEEE, 2013, pp. 313–316.
[27]
J. Rousseau and K. Mengersen, Asymptotic behaviour of the posterior distribution in overfitted mixture models, J. R. Stat. Soc. Series B Stat. Methodology 73(5) (2011), 689–710.
[28]
M. Rubinov and O. Sporns, Complex network measures of brain connectivity: Uses and interpretations, Neuroimage 52(3) (2010), 1059–1069.
[29]
M. Salter‐Townshend and T. H. McCormick, Latent space models for multiview network data, Ann. Appl. Stat. 11(3) (2017), 1217–1244.
[30]
S. L. Simpson, S. Hayasaka, and P. J. Laurienti, Exponential random graph modeling for complex brain networks, PLoS One 6(5) (2011), e20039.
[31]
S. L. Simpson, M. N. Moussa, and P. J. Laurienti, An exponential random graph modeling approach to creating group‐based representative whole‐brain connectivity networks, Neuroimage 60(2) (2012), 1117–1126.
[32]
S. M. Smith et al., Network modelling methods for FMRI, Neuroimage 54(2) (2011), 875–891.
[33]
T. A. Snijders et al., New specifications for exponential random graph models, Sociol. Methodol. 36(1) (2006), 99–153.
[34]
O. Sporns, Structure and function of complex brain networks, Dialogues Clin. Neurosci. 15 (2013), 247–262.
[35]
C. Stam, Modern network science of neurological disorders, Nat. Rev. Neurosci. 15 (2014), 683–695.
[36]
M. Stanley et al., Defining nodes in complex brain networks, Front. Comput. Neurosci. 7 (2013), 1–14.
[37]
M. Stephens, Dealing with label switching in mixture models, J. R. Stat. Soc. Series B Stat. Methodol. 62(4) (2000), 795–809.

Index Terms

  1. Spatial modeling of brain connectivity data via latent distance models with nodes clustering
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Statistical Analysis and Data Mining
    Statistical Analysis and Data Mining  Volume 12, Issue 3
    June 2019
    116 pages
    ISSN:1932-1864
    EISSN:1932-1872
    DOI:10.1002/sam.2019.12.issue-3
    Issue’s Table of Contents

    Publisher

    John Wiley & Sons, Inc.

    United States

    Publication History

    Published: 20 May 2019

    Author Tags

    1. latent space model
    2. mixture of Gaussians prior
    3. spatial effect
    4. structural brain network

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 09 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media