Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Expert‐in‐the‐loop design of integral nuclear data experiments

Published: 02 April 2024 Publication History
  • Get Citation Alerts
  • Abstract

    Nuclear data are fundamental inputs to radiation transport codes used for reactor design and criticality safety. The design of experiments to reduce nuclear data uncertainty has been a challenge for many years, but advances in the sensitivity calculations of radiation transport codes within the last two decades have made optimal experimental design possible. The design of integral nuclear experiments poses numerous challenges not emphasized in classical optimal design, in particular, constrained design spaces (in both a statistical and engineering sense), severely under‐determined systems, and optimality uncertainty. We present a design pipeline to optimize critical experiments that uses constrained Bayesian optimization within an iterative expert‐in‐the‐loop framework. We show a successfully completed experiment campaign designed with this framework that involved two critical configurations and multiple measurements that targeted compensating errors in 239Pu nuclear data.

    References

    [1]
    A. V. Arun Kumar, S. Rana, A. Shilton, and S. Venkatesh, Human‐AI collaborative Bayesian optimisation, Adv. Neural Inf. Process. Syst. 35 (2022), 16233–16245.
    [2]
    J. D. Bess and T. Ivanova, “Current overview of ICSBEP and IRPHEP benchmark evaluation practices,” EPJ web of conferences, Vol 239, EDP Sciences, Beijing, 2020, pp. 18002.
    [3]
    J. Blair Briggs, L. Scott, and A. Nouri, The international criticality safety benchmark evaluation project, Nucl. Sci. Eng. 145 (2003), no. 1, 1–10.
    [4]
    B. L. Broadhead, B. T. Rearden, C. M. Hopper, J. J. Wagschal, and C. V. Parks, Sensitivity‐and uncertainty‐based criticality safety validation techniques, Nucl. Sci. Eng. 146 (2004), no. 3, 340–366.
    [5]
    D. A. Brown, M. B. Chadwick, R. Capote, A. C. Kahler, A. Trkov, M. W. Herman, A. A. Sonzogni, Y. Danon, A. D. Carlson, M. Dunn, D. L. Smith, G. M. Hale, G. Arbanas, R. Arcilla, C. R. Bates, B. Beck, B. Becker, F. Brown, R. J. Casperson, J. Conlin, D. E. Cullen, M.‐A. Descalle, R. Firestone, T. Gaines, K. H. Guber, A. I. Hawari, J. Holmes, T. D. Johnson, T. Kawano, B. C. Kiedrowski, A. J. Koning, S. Kopecky, L. Leal, J. P. Lestone, C. Lubitz, J. I. Márquez Damián, C. M. Mattoon, E. A. McCutchan, S. Mughabghab, P. Navratil, D. Neudecker, G. P. A. Nobre, G. Noguere, M. Paris, M. T. Pigni, A. J. Plompen, B. Pritychenko, V. G. Pronyaev, D. Roubtsov, D. Rochman, P. Romano, P. Schillebeeckx, S. Simakov, M. Sin, I. Sirakov, B. Sleaford, V. Sobes, E. S. Soukhovitskii, I. Stetcu, P. Talou, I. Thompson, S. van der Marck, L. Welser‐Sherrill, D. Wiarda, M. White, J. L. Wormald, R. Q. Wright, M. Zerkle, G. Žerovnik, and Y. Zhu, Endf/b‐viii.0: The 8th major release of the nuclear reaction data library with CIELO‐project cross sections, new standards and thermal scattering data, Nuclear Data Sheets 148 (2018), 1–142 Special Issue on Nuclear Reaction Data.
    [6]
    L. Chan, Y.‐C. Liao, G. B. Mo, J. J. Dudley, C.‐L. Cheng, P. O. Kristensson, and A. Oulasvirta, “Investigating positive and negative qualities of human‐in‐the‐loop optimization for designing interaction techniques,” Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans 2022, pp. 1–14.
    [7]
    A. Cisse, X. Evangelopoulos, S. Carruthers, V. V. Gusev, and A. I. Cooper. Hypbo: Expert‐guided chemist‐in‐the‐loop Bayesian search for new materials. arXiv preprint arXiv:2308.11787 2023.
    [8]
    A. R. Clark, J. Mattingly, and J. A. Favorite, Application of neutron multiplicity counting experiments to optimal cross‐section adjustments, Nucl. Sci. Eng. 194 (2020), no. 4, 308–333.
    [9]
    T. Cutler, J. Hutchinson, N. Kleedtke, M. Rising, D. Neudecker, B. Little, and N. Thompson, Validation of jezebel reactivity coefficients and sensitivity analysis, Trans. Am. Nucl. Soc. 125 (2021), no. LA‐UR‐21‐26475, 627–630.
    [10]
    T. Endo and A. Yamamoto, Data assimilation using subcritical measurement of prompt neutron decay constant, Nucl. Sci. Eng. 194 (2020), no. 11, 1089–1104.
    [11]
    J. A. Favorite, Sensmg: First‐order sensitivities of neutron reaction rates, reaction‐rate ratios, leakage, keff, and α$$ \alpha $$ using PARTISN, Nucl. Sci. Eng. 192 (2018), no. 1, 80–114.
    [12]
    M. A. Gibson, S. R. Oleson, D. I. Poston, and P. McClure, “NASA's Kilopower reactor development and the path to higher power missions,” 2017 IEEE aerospace conference, IEEE 2017, pp. 1–14.
    [13]
    J. Guo, B. Ranković, and P. Schwaller, Bayesian optimization for chemical reactions, Chimia 77 (2023), no. 1/2, 31–38.
    [14]
    A. Holzinger, Interactive machine learning for health informatics: When do we need the human‐in‐the‐loop? Brain Inform. 3 (2016), no. 2, 119–131.
    [15]
    J. Hutchinson, J. Alwin, A. R. Clark, T. Cutler, M. J. Grosskopf, W. Haeck, M. W. Herman, N. Kleedtke, J. Lamproe, R. C. Little, I. J. Michaud, D. Neudecker, M. E. Rising, T. Smith, N. Thompson, S. Vander Wiel, and N. Wynne, Euclid: A new approach to constrain nuclear data via optimized validation experiments using machine learning, EPJ Web Conf. 284 (2023), 15006.
    [16]
    J. D. Hutchinson, N. A. Kleedtke, J. L. Alwin, A. R. Clark, T. E. Cutler, W. Haeck, R. C. Little, D. Neudecker, M. E. Rising, T. A. Smith, et al., Investigation of delayed neutron sensitivities for several ICSBEP benchmarks using MCNP, Trans. Am. Nucl. Soc. 125 (2021), no. LA‐UR‐21‐26405, 623‐626.
    [17]
    Y. Jin and P. V. Kumar, Bayesian optimisation for efficient material discovery: A mini review, Nanoscale 15 (2023), 10975–10984.
    [18]
    B. C. Kiedrowski, F. B. Brown, J. L. Conlin, J. A. Favorite, A. C. Kahler, A. R. Kersting, D. Kent Parsons, and J. L. Walker, Whisper: Sensitivity/uncertainty‐based computational methods and software for determining baseline upper subcritical limits, Nucl. Sci. Eng. 181 (2015), no. 1, 17–47.
    [19]
    M. Kim, Y. Ding, P. Malcolm, J. Speeckaert, C. J. Siviy, C. J. Walsh, and S. Kuindersma, Human‐in‐the‐loop Bayesian optimization of wearable device parameters, PLoS One 12 (2017), no. 9, e0184054.
    [20]
    N. A. Kleedtke, J. D. Hutchinson, M. Y. Hua, and M. E. Rising, Sensitivity coefficients calculated for the prompt neutron decay constant at or near delayed critical. Technical report, Los Alamos National Lab, Los Alamos, NM, USA, 2022.
    [21]
    I. Michaud, N. Kleedtke, J. Hutchinson, T. Smith, R. Little, T. Grove, and M. Rising, Designing critical experiments using Gaussian process optimization, Trans. Am. Nucl. Soc. 121 (2019), no. LA‐UR‐19‐31529, 1035‐1038.
    [22]
    D. Neudecker, M. J. Grosskopf, W. Haeck, P. Grechanuk, S. Vander Wiel, M. Rising, N. Sly, and P. Talou, Enhancing nuclear data validation analysis by using machine learning, Nuclear Data Sheets 167 (2020), 36–60.
    [23]
    D. Neudecker, O. Cabellos, A. R. Clark, M. J. Grosskopf, W. Haeck, M. W. Herman, J. Hutchinson, T. Kawano, A. E. Lovell, I. Stetcu, P. Talou, and S. Vander Wiel, Informing nuclear physics via machine learning methods with differential and integral experiments, Phys. Rev. C 104 (2021), no. 3, 034611.
    [24]
    D. Neudecker, M. J. Grosskopf, J. L. Alwin, T. E. Cutler, S. C. Frankle, N. Gibson, W. Haeck, M. W. Herman, J. D. Hutchinson, N. A. Kleedtke, et al., “Understanding the impact of nuclear‐data covariances on various integral responses using adjustment,” EPJ web of conferences (online), Vol 281, Los Alamos National Lab, Los Alamos, NM (United States), 2023.
    [25]
    A. Nouri, J. Pierre Nagel, B. Briggs, and T. Ivanova, Dice: Database for the international criticality safety benchmark evaluation program handbook, Nucl. Sci. Eng. 145 (2003), no. 1, 11–19.
    [26]
    V. Picheny, D. Ginsbourger, Y. Richet, and G. Caplin, Quantile‐based optimization of noisy computer experiments with tunable precision, Technometrics 55 (2013), no. 1, 2–13.
    [27]
    D. I. Poston, M. Gibson, and P. McClure, “Kilopower reactors for potential space exploration missions,” Nuclear and emerging Technologies for Space, American Nuclear Society Topical Meeting ANS 2019.
    [28]
    B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, Taking the human out of the loop: A review of Bayesian optimization, Proc. IEEE 104 (2015), no. 1, 148–175.
    [29]
    D. Siefman, C. Percher, J. Norris, A. Kersting, and D. Heinrichs, Constrained Bayesian optimization of criticality experiments, Ann. Nucl. Energy 151 (2021), 107894.
    [30]
    D. L. Smith, A least‐squares computational “tool kit”. Technical report, Argonne National Lab, Argonne, IL, 1993.
    [31]
    A. Sparkes, W. Aubrey, E. Byrne, A. Clare, M. N. Khan, M. Liakata, M. Markham, J. Rowland, L. N. Soldatova, K. E. Whelan, M. Young, and R. D. King, Towards robot scientists for autonomous scientific discovery, Autom. Exp. 2 (2010), 1–11.
    [32]
    I. Sundin, A. Voronov, H. Xiao, K. Papadopoulos, E. J. Bjerrum, M. Heinonen, A. Patronov, S. Kaski, and O. Engkvist, Human‐in‐the‐loop assisted de novo molecular design, J. Cheminf. 14 (2022), no. 1, 1–16.
    [33]
    N. Thompson, J. Hutchinson, J. Alwin, A. Clark, T. Cutler, M. Grosskopf, W. Haeck, M. Herman, N. Kleedtke, J. Lamproe, et al., Neutron leakage spectra sensitivities for icsbep benchmarks. Technical report, Los Alamos National Lab, Los Alamos, NM, USA, 2022.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Statistical Analysis and Data Mining
    Statistical Analysis and Data Mining  Volume 17, Issue 2
    April 2024
    271 pages
    ISSN:1932-1864
    DOI:10.1002/sam.v17.2
    Issue’s Table of Contents
    This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

    Publisher

    John Wiley & Sons, Inc.

    United States

    Publication History

    Published: 02 April 2024

    Author Tags

    1. criticality experiments
    2. integral response
    3. nuclear data
    4. optimal experimental design

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media