Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
review-article

Analysis of ranking data

Published: 10 October 2019 Publication History

Abstract

Ranking is one of the simple and efficient data collection techniques to understand individuals' perception and preferences for some items such as products, people, and species. Ranking data are frequently collected when individuals are asked to rank a set of items according to a certain preference criterion. Over the years, many statistical models and methods have been developed for analyzing ranking data. This paper will give a literature review of these models and methods and present the recent advances of the analysis of ranking data.
This article is categorized under:
Statistical and Graphical Methods of Data Analysis > Nonparametric Methods

Graphical Abstract

Analysis of ranking data.

References

[1]
Adkins, L., & Fligner, M. (1998). A non‐iterative procedure for maximum likelihood estimation of the parameters of Mallows' model based on partial rankings. Communications in Statistics: Theory and Methods, 27(9), 2199–2220.
[2]
Aledo, J. A., Gámez, J. A., & Molina, D. (2017). Tackling the supervised label ranking problem by bagging weak learners. Information Fusion, 35, 38–50.
[3]
Alvo, M. (2015). Bridging the gap: A likelihood function approach for the analysis of ranking data. Communications in Statistics: Theory and Methods, 45, 5835–5847.
[4]
Alvo, M., & Cabilio, P. (1985). Average rank correlation statistics in the presence of ties. Communications in Statistics: Theory and Methods, 14, 2095–2108.
[5]
Alvo, M., & Cabilio, P. (1993). Rank correlations and the analysis of rank‐based experimental design. In M. Fligner & S. Verducci (Eds.), Probability models and statistical analyses for ranked data (pp. 140–154). New York, NY: Springer‐Verlag.
[6]
Alvo, M., & Cabilio, P. (1994). Rank test of trend when data are incomplete. Environmetrics, 5, 21–27.
[7]
Alvo, M., & Cabilio, P. (1995a). Rank correlation methods for missing data. The Canadian Journal of Statistics, 23, 345–358.
[8]
Alvo, M., & Cabilio, P. (1995b). Testing ordered alternatives in the presence of incomplete data. Journal of the American Statistical Association, 90, 1015–1024.
[9]
Alvo, M., & Cabilio, P. (1996). Analysis of incomplete blocks for rankings. Statistics & Probability Letters, 29, 177–184.
[10]
Alvo, M., & Ertas, K. (1992). Graphical methods for ranking data. The Canadian Journal of Statistics, 20(4), 469–482.
[11]
Alvo, M., & Xu, H. (2017). The analysis of ranking data using score functions and penalized likelihood. Austrian Journal of Statistics, 46(1), 15–32.
[12]
Alvo, M., & Yu, P. L. H. (2014). Statistical methods for ranking data. New York: Springer.
[13]
Asfaw, D., Vitelli, V., Sørensen, Ø., Arjas, E., & Frigessi, A. (2017). Time‐varying rankings with the Bayesian Mallows model. Stat, 6(1), 14–30.
[14]
Aslam, J. A. & Montague, M. (2001). Models for metasearch. Paper presented at the Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 276–284), New Orleans, LA.
[15]
Beckett, L. A. (1993). Maximum likelihood estimation in Mallows' model using partially ranked data. In M. A. Fligner & J. S. Verducci (Eds.), Probability models and statistical analyses for ranking data (pp. 92–108). New York City, NY: Springer‐Verlag.
[16]
Biernacki, C., & Jacques, J. (2013). A generative model for rank data based on insertion sort algorithm. Computational Statistics and Data Analysis, 58, 162–176.
[17]
Bockenholt, U. (2001). Mixed‐effects analysis of rank‐ordered data. Psychometrika, 66(1), 45–62.
[18]
Borg, I., & Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applications. New York: Springer.
[19]
Bradley, R. A., & Terry, M. E. (1952). Rank analysis of incomplete block designs: I. the method of paired comparisons. Biometrika, 39(3/4), 324–345.
[20]
Bu, J., Cabilio, P., & Zhang, Y. (2009). Tests of concordance between groups of incomplete rankings. International Journal of Statistical Sciences, 9, 97–112.
[21]
Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and Hullender, G. (2005). Learning to rank using gradient descent. Paper presented at Proceedings of International Conference on Machine learning (ICML2005), Bonn, Germany, pp. 89–96.
[22]
Burges, C. J. C. (2010). From RankNet to LambdaRank to LambdaMART: An overview (Technical Report No. MSR‐TR‐2010‐82). Microsoft Research.
[23]
Busse, L. M., Orbanz, P., & Buhmann, J. M. (2007). Cluster analysis of heterogeneous rank data. Paper presented at the Proceedings of the 24th International Conference on Machine Learning, pp. 113–120.
[24]
Caron, F., & Doucet, A. (2012). Efficient Bayesian inference for generalized Bradley‐Terry models. Journal of Computational and Graphical Statistics, 21(1), 174–196.
[25]
Caron, F., & Teh, Y. W. (2012). Bayesian nonparametric models for ranked data. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems 25 (pp. 1520–1528). New York City, NY: Curran Associates, Inc.
[26]
Caron, F., Teh, Y. W., & Murphy, T. B. (2014). Bayesian nonparametric Plackett‐Luce models for the analysis of preferences for college degree programmes. Annals of Applied Statistics, 8(2), 1145–1181.
[27]
Carroll, J. D. (1972). Individual differences and multidimensional scaling. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.), Multidimensional scaling: Theory and applications in the behavioral sciences, Volume I: Theory (Vol. 1). New York, NY: Seminar Press.
[28]
Clémençon, S., Depecker, M., & Vayatis, N. (2013). Ranking forests. Journal of Machine Learning Research, 14, 39–73.
[29]
Clémençon, S., & Vayatis, N. (2009). Tree‐based ranking methods. IEEE Transactions on Information Theory, 55(9), 4316–4336.
[30]
Cohen, A., & Mallows, C. (1980). Analysis of ranking data. Technical memorandum. Murray Hill, NJ: AT&T Bell Laboratories.
[31]
Cox, T., & Cox, M. (2001). Multidimensional scaling (2nd ed.). Boca Raton, FL: Chapman and Hall.
[32]
Critchlow, D. (1985). Metric methods for Analyzing partially ranked data. New York, NY: Springer‐Verlag.
[33]
Critchlow, D., & Verducci, J. (1992). Detecting a trend in paired rankings. Applied Statistics, 41, 17–29.
[34]
Critchlow, D. E., Fligner, M. A., & Verducci, J. S. (1991). Probability models on rankings. Journal of Mathematical Psychology, 35(3), 294–318.
[35]
D'Ambrosio, A., & Heiser, W. J. (2016). A recursive partitioning method for the prediction of preference rankings based upon Kemeny distances. Psychometrika, 81(3), 774–794.
[36]
Dansie, B. R. (1986). Normal order statistics as permutation probability models. Applied Statistics, 35, 269–275.
[37]
de Borda, J. (1781). Mémoire sur les élections au scrutin. Mémoires de l'Académie Royale des Sciences Année, 1781, 657–664.
[38]
DeConde, R. P., Hawley, S., Falcon, S., Clegg, N., Knudsen, B. S., & Etzioni, R. (2006). Combining results of microarray experiments: a rank aggregation approach. Statistical Applications in Genetics and Molecular Biology, 5, 15.
[39]
D'Elia, A., & Piccolo, D. (2005). A mixture model for preference data analysis. Computational Statistics & Data Analysis, 49, 917–934.
[40]
Deng, K., Han, S., Li, K. J., & Liu, J. S. (2014). Bayesian aggregation of order‐based rank data. Journal of the American Statistical Association, 109(507), 1023–1039.
[41]
Desarkar, M. S., Sarkar, S., & Mitra, P. (2016). Preference relations based unsupervised rank aggregation for metasearch. Expert Systems with Applications, 49, 86–98.
[42]
Diaconis, P. (1988). Group representations in probability and statistics. Hayward, CA: Institute of Mathematical Statistics.
[43]
Diaconis, P. (1989). A generalization of spectral analysis with application to ranked data. Annals of Statistics, 17, 949–979.
[44]
Diaconis, P., & Graham, R. (1977). Spearman's footrule as a measure of disarray. Journal of the Royal Statistical Society, Series B, 39, 262–268.
[45]
Doignon, J.‐P., Pekec, A., & Regenwetter, M. (2004). The repeated insertion model for rankings: Missing link between two subset choice models. Psychometrika, 69(1), 33–54.
[46]
Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation methods for the web. In Proceedings of the 10th international conference on world wide web, WWW '01 (pp. 613–622). New York, NY: ACM.
[47]
Fagin, R., Lotem, A., & Naor, M. (2003). Optimal aggregation algorithms for middleware. Journal of Computer and System Sciences, 66(4), 614–656.
[48]
Fasola, S., & Sciandra, M. (2015). New flexible probability distributions for ranking data. In I. Morlini, T. Minerva, & M. Vichi (Eds.), Advances in Statistical Models for Data Analysis (pp. 117–124). Cham, Switzerland: Springer.
[49]
Feigin, P. D., & Alvo, M. (1986). Intergroup diversity and concordance for ranking data: An approach via metrics for permutations. Annals of Statistics, 14(2), 691–707.
[50]
Fligner, M., & Verducci, J. S. (1988). Multi‐stage ranking models. Journal of the American Statistical Association, 83, 892–901.
[51]
Fligner, M. A., & Verducci, J. S. (1986). Distance based ranking models. Journal of the Royal Statistical Society, Series B, 48(3), 359–369.
[52]
Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y. (2003). An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research, 4, 933–969.
[53]
Genz, A. (1992). Numerical computation of multivariate normal probabilities. Journal of Computational and Graphical Statistics, 1, 141–149.
[54]
Gibbons, J. D., & Chakraborti, S. (2011). Nonparametric statistical inference (5th ed.). New York, NY: Chapman Hall.
[55]
Guiver, J., & Snelson, E. (2009). Bayesian inference for Plackett‐Luce ranking models. In Proceedings of the 26th annual international conference on machine learning, ICML ’09 (pp. 377–384). New York, NY: ACM.
[56]
Hausman, J., & Ruud, P. A. (1987). Specifying and testing econometric models for rank‐ordered data. Journal of Econometrics, 34, 83–104.
[57]
Helmbold, D. P., & Warmuth, M. K. (2007). Learning permutations with exponential weights. In N. H. Bshouty & C. Gentile (Eds.), Learning theory (pp. 469–483). Berlin, Germany: Springer.
[58]
Henery, R. J. (1983). Permutation probabilities for gamma random variables. Applied Probability, 20, 822–834.
[59]
Higgins, J. J. (2004). An introduction to modern nonparametric statistics. London, England: Brooks Cole‐Thomson.
[60]
Hollander, M., & Sethuraman, J. (1978). Testing for agreement between two groups of judges. Biometrika, 65(2), 403–411.
[61]
Huang, J., & Guestrin, C. (2012). Uncovering the riffled independence structure of ranked data. Electronic Journal of Statistics, 6, 119–230.
[62]
Huang, J., Guestrin, C., & Guibas, L. (2009). Fourier theoretic probabilistic inference over permutations. Journal of Machine Learning Research, 10, 997–1070.
[63]
Huang, J., Kapoor, A., & Guestrin, C. (2012). Riffled independence for efficient inference with partial rankings. Journal of Artificial Intelligence Research, 44, 491–532.
[64]
Hull, D. A., Pedersen, J. O., and Schütze, H. (1996). Method combination for document filtering. Paper presented at Proceedings of the 19th annual International ACM SIGIR conference on Research and development in information retrieval (pp. 279–287). ACM.
[65]
Hunter, D. R., & Lange, K. (2004). A tutorial on MM algorithms. The American Statistician, 58(1), 30–37.
[66]
Kidwell, P., Lebanon, G., & Cleveland, W. (2008). Visualizing incomplete and partially ranked data. IEEE Transactions on Visualization and Computer Graphics, 14(6), 1356–1363.
[67]
Kolde, R., Laur, S., Adler, P., & Vilo, J. (2012). Robust rank aggregation for gene list integration and meta‐analysis. Bioinformatics, 28(4), 573–580.
[68]
Laha, A. K., & Dongaonkar, S. (2012). Chapter 19: Bayesian analysis of rank data using SIR. In A. SenGupta (Ed.), Advances in multivariate statistical methods (pp. 327–335). Singapore: World Scientific.
[69]
Laha, A. K., Dutta, S., & Roy, V. (2017). A novel sandwich algorithm for empirical Bayes analysis of rank data. Statistics and Its Interface, 10(4), 543–556.
[70]
Lebanon, G., & Lafferty, J. D. (2002). Cranking: Combining rankings using conditional probability models on permutations. In Proceedings of the nineteenth international conference on machine learning, ICML ’02 (pp. 363–370). San Francisco, CA: Morgan Kaufmann Publishers Inc.
[71]
Lee, P. H., & Yu, P. L. H. (2010). Distance‐based tree models for ranking data. Computational Statistics & Data Analysis, 54(6), 1672–1682.
[72]
Lee, P. H., & Yu, P. L. H. (2012). Mixtures of weighted distance‐based models for ranking data with applications in political studies. Computational Statistics & Data Analysis, 56(8), 2486–2500.
[73]
Leung, H. L. (2003). Wandering ideal point models for single or multi‐attribute ranking data: A Bayesian approach. (Master's thesis). The University of Hong Kong.
[74]
Li, X., Wang, X., & Xiao, G. (2019). A comparative study of rank aggregation methods for partial and top ranked lists in genomic applications. Briefings in Bioinformatics, 20(1), 178–189.
[75]
Lin, S. (2010). Rank aggregation methods. WIREs Computational Statistics, 2(5), 555–570.
[76]
Lin, S., & Ding, J. (2009). Integration of ranked lists via cross entropy Monte Carlo with applications to mRNA and microRNA studies. Biometrics, 65, 9–18.
[77]
Liu, Q., Crispino, M., Scheel, I., Vitelli, V., & Frigessi, A. (2019). Model‐based learning from preference data. Annual Review of Statistics and its Application, 6(1), 329–354.
[78]
Liu, Y.‐T., Liu, T.‐Y., Qin, T., Ma, Z.‐M., & Li, H. (2007). Supervised rank aggregation. In Proceedings of the 16th international conference on world wide web, WWW ’07 (pp. 481–490). New York, NY: ACM.
[79]
Lu, T., & Boutilier, C. (2014). Effective sampling and learning for Mallows models with pairwise‐preference data. Journal of Machine Learning Research, 15, 3963–4009.
[80]
Luce, R. D. (1959). Individual choice behavior. New York, NY: Wiley.
[81]
Mallows, C. L. (1957). Non‐null ranking models. I. Biometrika, 44(1/2), 114–130.
[82]
Manmatha, R., Rath, T., & Feng, F. (2001). Modeling score distributions for combining the outputs of search engines. Proceedings of the 24th Annual International ACM SIGIR conference on Research and Development in Information Retrieval (pp. 267–275). ACM.
[83]
Manmatha, R. & Sever, H. (2002). A formal approach to score normalization for meta‐search. Proceedings of the second International conference on Human Language Technology Research (pp. 98–103). Morgan Kaufmann Publishers Inc.
[84]
Marcus, B., Sealfon, S. C., & Chikina, M. D. (2015). Hybrid Bayesian‐rank integration approach improves the predictive power of genomic dataset aggregation. Bioinformatics, 31(2), 209–215.
[85]
Marden, J. I. (1992). Use of nested orthogonal contrasts in analyzing rank data. Journal of the American Statistical Association, 87, 307–318.
[86]
Marden, J. I. (1996). Analyzing and modeling rank data. London: CRC Press.
[87]
Maydeu‐Olivares, A., & Bockenholt, U. (2005). Structural equation modeling of paired‐comparison and ranking data. Psychological Methods, 10(3), 285–304.
[88]
Maystre, L., & Grossglauser, M. (2015). Fast and accurate inference of Plackett‐Luce models. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural information processing systems 28 (pp. 172–180). New York City, NY: Curran Associates, Inc.
[89]
McFadden, D. (1978). Modeling the choice of residential location. In F. Snickars & J. Weibull (Eds.), Spatial interaction theory and planning models (pp. 75–96). Amsterdam, The Netherlands: North Holland.
[90]
McFadden, D., & Train, K. (2000). Mixed MNL models for discrete response. Journal of Applied Econometrics, 15, 447–470.
[91]
Meilă, M. and Bao, L. (2008). Estimation and clustering with infinite rankings. Paper presented at UAI'08 Proceedings of the Twenty‐Fourth Conference on Uncertainty in Artificial Intelligence (pp. 393–402), Helsinki, Finland.
[92]
Meilă, M., & Bao, L. (2010). An exponential model for infinite rankings. Journal of Machine Learning Research, 11, 3481–3518.
[93]
Meilă, M., & Chen, H. (2010). Dirichlet process mixtures of generalized Mallows models. In Proceedings of the Twenty‐Sixth Conference on Uncertainty in Artificial Intelligence, UAI’10 (pp. 358–367). Arlington, VA: AUAI Press.
[94]
Mollica, C., & Tardella, L. (2014). Epitope profiling via mixture modeling of ranked data. Statistics in Medicine, 33, 3738–3758.
[95]
Mollica, C., & Tardella, L. (2017). Bayesian Plackett–Luce mixture models for partially ranked data. Psychometrika, 82(2), 442–458.
[96]
Murphy, T. B., & Martin, D. (2003). Mixtures of distance‐based models for ranking data. Computational Statistics & Data Analysis, 41(3), 645–655.
[97]
Pendergrass, R. N., & Bradley, R. A. (1960). Ranking in triple comparisons. In O. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, & H. B. Mann (Eds.), Contributions to Probability and Statistics (pp. 331–351). Palo Alto, CA: Stanford University Press.
[98]
Plackett, R. L. (1975). The analysis of permutations. Applied Statistics, 24, 193–202.
[99]
Qian, Z., & Yu, P. L. H. (2019). Weighted distance‐based models for ranking data using the R package rankdist. Journal of Statistical Software, 90(1).
[100]
Qin, T., Geng, X., & Liu, T.‐Y. (2010). A new probabilistic model for rank aggregation. In J. D. Lafferty, C. K. I. Williams, J. Shawe‐Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in neural information processing systems 23 (pp. 1948–1956). New York City, NY: Curran Associates, Inc.
[101]
Ribeiro, G., Duivesteijn, W., Soares, C., and Knobbe, A. (2012). Multilayer perceptron for label ranking. Paper presented at Proceedings of Artificial Neural Networks and Machine Learning ‐ ICANN 2012 ‐ 22nd International Conference on Artificial Neural Networks, (pp. 25–32), Lausanne, Switzerland, September 11–14, 2012.
[102]
Salakhutdinov, R., & Mnih, A. (2007). Probabilistic matrix factorization. In Proceedings of the 20th international conference on neural information processing systems, NIPS’07 (pp. 1257–1264). New York City, NY: Curran Associates Inc.
[103]
Schimek, M. G., Budinská, E. K., Kugler, K., Švendová, V., Ding, J., & Lin, S. (2015). TopKLists: A comprehensive R package for statistical inference, stochastic aggregation, and visualization of multiple omics ranked lists. Statistical Applications in Genetics and Molecular Biology, 14(3), 311–316.
[104]
Schulman, R. S. (1979). A geometric model of rank correlation. The American Statistician, 33(2), 77–80.
[105]
Shih, Y. S., & Liu, K. H. (2019). Regression trees for detecting preference patterns from rank data. Advances in Data Analysis and Classification.
[106]
Skrondal, A., & Rabe‐Hesketh, S. (2003). Multilevel logistic regression for polytomous data and rankings. Psychometrika, 68(2), 267–287.
[107]
Smith, B. B. (1950). Discussion of Professor Ross's paper. Journal of the Royal Statistical Society, Series B, 12, 53–56.
[108]
Stern, H. (1990). Models for distributions on permutations. Journal of the American Statistical Association, 85, 558–564.
[109]
Sun, M., & Lebanon, G. (2012). Estimating probabilities in recommendation systems. Applied Statistics, 61(3), 471–492.
[110]
Sun, M., Lebanon, G., & Kidwell, P. (2011). Estimating probabilities in recommendation systems. In G. Gordon, D. Dunson, & M. Dudk (Eds.), Proceedings of the fourteenth international conference on artificial intelligence and statistics Proceedings of machine learning research (Vol. 15, pp. 734–742). Fort Lauderdale, FL: PMLR.
[111]
Švendová, V., & Schimek, M. G. (2017). A novel method for estimating the common signals for consensus across multiple ranked lists. Computational Statistics & Data Analysis, 115, 122–135.
[112]
Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34(4), 273–286.
[113]
Tversky, A. (1972). Elimination by aspects: A theory of choice. Psychological Review, 79(4), 281–299.
[114]
Vitelli, V., Sorensen, O., Crispino, M., Frigessi, A., & Arjas, E. (2018). Probabilistic preference learning with the Mallows rank model. Journal of Machine Learning Research, 18(158), 1–49.
[115]
Volkovs, M. N., & Zemel, R. S. (2014). New learning methods for supervised and unsupervised preference aggregation. Journal of Machine Learning Research, 15(1), 1135–1176.
[116]
Wan, W. M. (2011). On some topics in Modeling and mining ranking data. (Ph.D. thesis). The University of Hong Kong.
[117]
Xu, H., Alvo, M., & Yu, P. L. H. (2017). Angle‐based models for ranking data. Computational Statistics & Data Analysis, 121, 131–136.
[118]
Yasutake, S., Hatano, K., Takimoto, E., & Takeda, M. (2012). Online rank aggregation. In S. C. H. Hoi & W. Buntine (Eds.), Proceedings of the asian conference on machine learning Proceedings of machine learning research (Vol. 25, pp. 539–553). Singapore: Singapore Management University.
[119]
Yellot, J. (1977). The relationship between Luce's choice axiom, Thurstone's theory of comparative judgment and the double exponential distribution. Journal of Mathematical Psychology, 15, 109–144.
[120]
Yi, D., Li, X., & Liu, J. (2017). Bayesian aggregation of rank data with covariates and heterogeneous rankers (Technical Report). Harvard University, arXiv:1607.06051.
[121]
Yu, P. L. H. (2000). Bayesian analysis of order‐statistics models for ranking data. Psychometrika, 65(3), 281–299.
[122]
Yu, P. L. H., & Chan, L. K. Y. (2001). Bayesian analysis of wandering vector models for displaying ranking data. Statistica Sinica, 11, 445–461.
[123]
Yu, P. L. H., Lam, K. F., & Alvo, M. (2002). Nonparametric rank test for independence in opinion surveys. Austrian Journal of Statistics, 31, 279–290.
[124]
Yu, P. L. H., Lam, K. F., & Lo, S. M. (2005). Factor analysis for ranked data with application to a job selection attitude survey. Journal of the Royal Statistical Society, Series A, 168(3), 583–597.
[125]
Yu, P. L. H., Lee, P. H., Cheung, S. F., Lau, E. Y. Y., Mok, D. S. Y., & Hui, H. C. (2016). Logit tree models for discrete choice data with application to advice‐seeking preferences among Chinese christians. Computational Statistics, 31(2), 799–827.
[126]
Yu, P. L. H., Lee, P. H., & Wan, W. M. (2013). Factor analysis for paired ranked data with application on parent‐child value orientation preference data. Computational Statistics, 28, 1915–1945.
[127]
Yu, P. L. H., Wan, W. M., & Lee, P. H. (2010). Decision tree modelling for ranking data. In J. Furnkranz & E. Hullermeier (Eds.), Preference learning (pp. 83–106). New York, NY: Springer.
[128]
Yu, P. L. H., & Xu, H. (2019). Rank aggregation using latent‐scale distance‐based models. Statistics and Computing, 29(2), 335–349.

Cited By

View all

Index Terms

  1. Analysis of ranking data
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image WIREs Computational Statistics
      WIREs Computational Statistics  Volume 11, Issue 6
      November/December 2019
      69 pages
      ISSN:1939-5108
      EISSN:1939-0068
      DOI:10.1002/wics.v11.6
      Issue’s Table of Contents

      Publisher

      John Wiley & Sons, Inc.

      United States

      Publication History

      Published: 10 October 2019

      Author Tags

      1. Data visualization
      2. probability models
      3. ranking data
      4. statistical inference

      Qualifiers

      • Review-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 30 Aug 2024

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      Get Access

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media