Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/11523468_117guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Unsafe grammars and panic automata

Published: 11 July 2005 Publication History

Abstract

We show that the problem of checking if an infinite tree generated by a higher-order grammar of level 2 (hyperalgebraic) satisfies a given μ-calculus formula (or, equivalently, if it is accepted by an alternating parity automaton) is decidable, actually 2-Exptime-complete. Consequently, the monadic second-order theory of any hyperalgebraic tree is decidable, so that the safety restriction can be removed from our previous decidability result. The last result has been independently obtained by Aehlig, de Miranda and Ong. Our proof goes via a characterization of possibly unsafe second-order grammars by a new variant of higher-order pushdown automata, which we call panic automata. In addition to the standard pop1 and pop2 operations, these automata have an option of a destructive move called panic. The model-checking problem is then reduced to the problem of deciding the winner in a parity game over a suitable 2nd order pushdown system.

References

[1]
Aehlig, K., de Miranda, J.G., and Ong, L., Safety is not a restriction at level 2 for string languages. In: Proc. FOSSACS '05, Springer LNCS 3441 (2005), 490-504.
[2]
Aehlig, K., de Miranda J.G., and Ong, L., The monadic second order theory of trees given by arbitrary level-two recursion schemes is decidable. In: Proc. TLCA '05, Springer LNCS 3461 (2005), 39-54.
[3]
Cachat, T., Higher Order Pushdown Automata, the Caucal Hierarchy of Graphs and Parity Games. In: Proc. ICALP 2003, Springer LNCS 2719 (2003), 556-569.
[4]
Cachat, T., Walukiewicz, I., The complexity of games on higher order pushdown automata, manuscript, 2004.
[5]
Caucal, D., On infinite terms having a decidable monadic second-order theory. In: Proc. MFCS 2002, Springer LNCS 2420 (2002), 65-176.
[6]
Courcelle, B., The monadic second-order theory of graphs IX: Machines and their behaviours. Theoretical Comput. Sci., 151:125-162, 1995.
[7]
Courcelle, B., Knapik, T., The evaluation of if first-order substitution is monadic second-order compatible Theoretical Comput. Sci., 281(1-2):177-206, 2002.
[8]
Damm, W., The IO- and OI-hierarchies. Theoretical Comput. Sci., 20(2):95-208, 1982.
[9]
Emerson, E. A., Jutla, C. S., Tree automata, mu-calculus and determinacy. In: Proceedings 32th Annual IEEE Symp. on Foundations of Comput. Sci., IEEE Computer Society Press, 1991, pp. 368-377.
[10]
Engelfriet, J., Iterated push-down automata and complexity classes. In: Proc. 15th STOC, 1983, pp. 365-373.
[11]
Engelfriet, J., Schmidt, E.M., IO and OI, J. Comput. System Sci. 15, 3, 1977, pp. 328-353, and 16, 1, 1978, pp. 67-99.
[12]
Grädel, E., Thomas, W., and Wilke, T., Editors, Automata, Logics, and Infinite Games. A Guide to Current Research, LNCS 1500, Springer-Verlag, 2002.
[13]
Knapik, T., Niwinski, D., and Urzyczyn, P., Deciding monadic theories of hyperalgebraic trees. In: Typed Lambda Calculi and Applications, 5th International Conference, Springer LNCS 2044 (2001), 253-267.
[14]
Knapik, T., Niwinski, D., Urzyczyn, P., Higher-order pushdown trees are easy. In: Proc. FoSSaCS'02, Springer LNCS 2303 (2002), 205-222.
[15]
Knapik, T., Niwinski, D., Urzyczyn, P., Walukiewicz, I., Unsafe grammars and panic automata, draft, http://www.mimuw.edu.pl/~niwinski/prace.html.
[16]
Maslov, A.N., The hierarchy of indexed languages of an arbitrary level, Soviet Math. Dokl., 15, pp. 1170-1174, 1974.
[17]
A. W. Mostowski. Games with forbidden positions. Technical Report 78, Instytut Matematyki, University of Gdansk, 1991.
[18]
Niwinski, D., Fixed points characterization of infinite behaviour of finite state systems. Theoret. Comput. Sci., 189:1-69, 1997.
[19]
Thomas, W., Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 3, Springer-Verlag, 1997, pp. 389- 455.
[20]
Walukiewicz, I., Pushdown processes: Games and model checking. Information and Computation, 164(2):234-263, 2001.

Cited By

View all
  • (2021)Collapsible Pushdown Parity GamesACM Transactions on Computational Logic10.1145/345721422:3(1-51)Online publication date: 28-Jun-2021
  • (2021)Higher-order Recursion Schemes and Collapsible Pushdown Automata: Logical PropertiesACM Transactions on Computational Logic10.1145/345291722:2(1-37)Online publication date: 15-May-2021
  • (2017)Collapsible Pushdown Automata and Recursion SchemesACM Transactions on Computational Logic10.1145/309112218:3(1-42)Online publication date: 11-Aug-2017
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
ICALP'05: Proceedings of the 32nd international conference on Automata, Languages and Programming
July 2005
1476 pages
ISBN:3540275800
  • Editors:
  • Luís Caires,
  • Giuseppe F. Italiano,
  • Luís Monteiro,
  • Catuscia Palamidessi,
  • Moti Yung

Sponsors

  • Fundacao para a Ciencia e Tecnologia
  • FCT: Foundation for Science and Technology
  • Centro de Lógica e Computação/IST/UTL: Centro de Lógica e Computação/IST/UTL

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 11 July 2005

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Collapsible Pushdown Parity GamesACM Transactions on Computational Logic10.1145/345721422:3(1-51)Online publication date: 28-Jun-2021
  • (2021)Higher-order Recursion Schemes and Collapsible Pushdown Automata: Logical PropertiesACM Transactions on Computational Logic10.1145/345291722:2(1-37)Online publication date: 15-May-2021
  • (2017)Collapsible Pushdown Automata and Recursion SchemesACM Transactions on Computational Logic10.1145/309112218:3(1-42)Online publication date: 11-Aug-2017
  • (2016)Unboundedness and downward closures of higher-order pushdown automataACM SIGPLAN Notices10.1145/2914770.283762751:1(151-163)Online publication date: 11-Jan-2016
  • (2016)Unboundedness and downward closures of higher-order pushdown automataProceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages10.1145/2837614.2837627(151-163)Online publication date: 11-Jan-2016
  • (2014)Krivine machines and higher-order schemesInformation and Computation10.1016/j.ic.2014.07.012239:C(340-355)Online publication date: 1-Dec-2014
  • (2013)C-SHOReACM SIGPLAN Notices10.1145/2544174.250058948:9(13-24)Online publication date: 25-Sep-2013
  • (2013)C-SHOReProceedings of the 18th ACM SIGPLAN international conference on Functional programming10.1145/2500365.2500589(13-24)Online publication date: 25-Sep-2013
  • (2013)Model Checking Higher-Order ProgramsJournal of the ACM10.1145/2487241.248724660:3(1-62)Online publication date: 1-Jun-2013
  • (2012)Collapsible Pushdown Automata and Labeled Recursion SchemesProceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer Science10.1109/LICS.2012.73(165-174)Online publication date: 25-Jun-2012
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media