Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/11551263_28guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Selecting what is important: training visual attention

Published: 11 September 2005 Publication History

Abstract

We present a new, sophisticated algorithm to select suitable training images for our biologically motivated attention system VOCUS. The system detects regions of interest depending on bottom-up (scene-dependent) and top-down (target-specific) cues. The top-down cues are learned by VOCUS from one or several training images. We show that our algorithm chooses a subset of the training set that outperforms both the selection of one single image as well as simply using all available images for learning. With this algorithm, VOCUS is able to quickly and robustly detect targets in numerous real-world scenes.

References

[1]
Backer, G., Mertsching, B. and Bollmann, M. Data- and model-driven Gaze Control for an Active-Vision System. IEEE Trans. on PAMI, 23(12) (2001) 1415-1429.
[2]
Corbetta, M. and Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews, 3 (3, 2002) 201-215.
[3]
Frintrop, S. VOCUS: A Visual Attention System for Object Detection and Goal-directed Search. PhD thesis University of Bonn Germany (to appear 2005).
[4]
Frintrop, S., Backer, G. and Rome, E. Goal-directed Search with a Top-down Modulated Computational Attention System. In: Proc. of DAGM 2005 (accepted) Lecture Notes in Computer Science (LNCS) Springer (2005).
[5]
Hamker, F. Modeling Attention: From computational neuroscience to computer vision. In: Proc. of WAPCV'04 (2004) 59-66.
[6]
Hunt, R. W. G. Measuring colour, Ellis Horwood Limited Chichester, West Sussex, England 1991.
[7]
Itti, L., Koch, C. and Niebur, E. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans. on PAMI, 20 (11, 1998) 1254-1259.
[8]
Koch, C. and Ullman, S. Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 4 (4, 1985) 219-227.
[9]
Mitri, S., Frintrop, S., Pervölz, K., Surmann, H. and Nüchter, A. Robust Object Detection at Regions of Interest with an Application in Ball Recognition. In: Proc. of the Int'l Conf. on Robotics and Automation (ICRA '05) (to appear 2005).
[10]
Navalpakkam, V., Rebesco, J. and Itti, L. Modeling the influence of task on attention. Vision Research, 45 (2, 2005) 205-231.
[11]
Neisser, U. Cognitive Psychology, Appleton-Century-Crofts New York 1967.
[12]
Palmer, S. E. Vision Science, Photons to Phenomenology, The MIT Press 1999.
[13]
Schill, K., Umkehrer, E., Beinlich, S., Krieger, G. and Zetzsche, C. Scene analysis with saccadic eye movements: Top-down and bottom-up modeling. Journal of Electronic Imaging, 10 (1, 2001) 152-160.
[14]
Sun, Y. and Fisher, R. Object-based visual attention for computer vision. Artificial Intelligence, 146 (1, 2003) 77-123.
[15]
Theeuwes, J. Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11 (2004) 65-70.
[16]
Treisman, A. M. and Gelade, G. A feature integration theory of attention. Cognitive Psychology, 12 (1980) 97-136.
[17]
Tsotsos, J. K. Complexity, Vision, and Attention. In: Vision and Attention, M. Jenkin and L. R. Harris (Eds.) Springer Verlag 2001 chapter 6.
[18]
Tsotsos, J. K., Culhane, S. M., Wai, W. Y. K., Lai, Y., Davis, N. and Nuflo, F. Modeling Visual Attention via Selective Tuning. AI, 78 (1-2, 1995) 507-545.
[19]
Wolfe, J. Guided Search 2.0: A Revised Model of Visual Search. Psychonomic Bulletin & Review, 1 (2, 1994) 202-238.

Cited By

View all
  • (2013)Incrementally biasing visual search using natural language inputProceedings of the 2013 international conference on Autonomous agents and multi-agent systems10.5555/2484920.2484929(31-38)Online publication date: 6-May-2013
  • (2005)Goal-directed search with a top-down modulated computational attention systemProceedings of the 27th DAGM conference on Pattern Recognition10.1007/11550518_15(117-124)Online publication date: 31-Aug-2005

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
KI'05: Proceedings of the 28th annual German conference on Advances in Artificial Intelligence
September 2005
409 pages
ISBN:3540287612
  • Editor:
  • Ulrich Furbach

Sponsors

  • Griesson - de Beukelaer GmbH: Griesson - de Beukelaer GmbH
  • City of Koblenz: City of Koblenz
  • Government of Rhineland-Palatine: Government of Rhineland-Palatine
  • University of Koblenz-Landau

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 11 September 2005

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2013)Incrementally biasing visual search using natural language inputProceedings of the 2013 international conference on Autonomous agents and multi-agent systems10.5555/2484920.2484929(31-38)Online publication date: 6-May-2013
  • (2005)Goal-directed search with a top-down modulated computational attention systemProceedings of the 27th DAGM conference on Pattern Recognition10.1007/11550518_15(117-124)Online publication date: 31-Aug-2005

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media