Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/11788034_15guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Video retrieval using high level features: exploiting query matching and confidence-based weighting

Published: 13 July 2006 Publication History

Abstract

Recent research in video retrieval has focused on automated, high-level feature indexing on shots or frames. One important application of such indexing is to support precise video retrieval. We report on extensions of this semantic indexing on news video retrieval. First, we utilize extensive query analysis to relate various high-level features and query terms by matching the textual description and context in a time-dependent manner. Second, we introduce a framework to effectively fuse the relation weights with the detectors' confidence scores. This results in individual high level features that are weighted on a per-query basis. Tests on the TRECVID 2005 dataset show that the above two enhancements yield significant improvement in performance over a corresponding state-of-the-art video retrieval baseline.

References

[1]
Hauptmann, A., Chen, M.Y., Christel, M., Huang, C., Lin, W.H., Ng, T., Papernick, N., Velivelli, A., Yang, J., Yan, R., Yang, H., Wactlar, H.D.: Confounded expectations: Informedia at TRECVID 2004. In: TRECVID, 2004. (2004).
[2]
Miller, G.: Wordnet: An on-line lexical database. International Journal of Lexicography (1995).
[3]
Neo, S., Goh, H., Chua, T.: Multimodal event-based model for retrieval of multi-lingual news video. In: IWAIT. (2006).
[4]
Over, P., Ianeva, T.: TRECVID 2005: An introduction. In: TRECVID, 2005. (2005).
[5]
Smeaton, A.F., Kraaij, W., Over, P.: TRECVID - an overview. In: TRECVID, 2003. (2003).
[6]
Amir, A., Iyengar, G., Argillander, J., Campbell, M., Haubold, A., Ebadollahi, S., Kang, F., Naphade, M.R., Natsev, A.P., Smith, J.R., Tesic, J., Volkmer, T.: IBM research TRECVID- 2005 video retrieval system. In: TRECVID, 2005. (2005).
[7]
Chang, S.F., Hsu, W., Kennedy, L., Xie, L., Yanagawa, A., Zavesky, E., Zhang, D.Q.: Columbia university TRECVID-2005 video search and high-level feature extraction. In: TRECVID, 2005. (2005).
[8]
Snoek, C.G.M., van Gemert, J., Geusebroek, J.M., Huurnink, B., Koelma, D.C., Nguyen, G.P., de Rooij, O., Seinstra, F.J., Smeulders, A.W.M., Veenman, C.J., Worring, M.: The MediaMill TRECVID 2005 semantic video search engine. In: Proceedings of the 3rd TRECVID Workshop, NIST (2005).
[9]
Hauptmann, A.G., Christel, M., Concescu, R., Gao, J., Jin, Q., Lin, W.H., Pan, J.Y., Stevens, S.M., Yan, R., Yang, J., Zhang, Y.: CMU Informedia's TRECVID 2005 skirmishes. In: TRECVID, 2005. (2005).
[10]
Foley, C., Gurrin, C., Jones, G., Lee, H., McGivney, S., O'Connor, N.E., Sav, S., Smeaton, A.F., Wilkins, P.: TRECVid 2005 experiments at dublin city university. In: TRECVID, 2005. (2005).
[11]
Chua, T.S., Neo, S.Y., Goh, H.K., Zhao, M., Xiao, Y., Wang, G.: TRECVID 2005 by NUS PRIS. In: TRECVID 2005. (2005).
[12]
Chua, T.S., Neo, S.Y., Li, K., Wang, G., Shi, R., Zhao, M., Xu, H.: TRECVID 2004 search and feature extraction task by NUS PRIS. In: TRECVID 2004. (2004).
[13]
Yang, H., Chua, T.S., Wang, S., Koh, C.K.: Structured use of external knowledge for event-based open-domain question-answering. In: SIGIR 2003, Canada, Jul 2003. (2003).
[14]
Neo, S., Chua, T.: Query-dependent retrieval on news video. In: MMIR'05 workshop in SIGIR'05. (2005).
[15]
Resnik, P.: Semantic similarity in a taxonomy: An information- based measure and its applications to problems of ambiguity in natural language. Journal of Artificial Intelligence Research, 11 (1999) 95-130.
[16]
Kennedy, L.S., Natsev, A.P., Chang, S.F.: Automatic discover of query-class-dependent models for multimodal search. In: ACM Multimedia (MM '05). (2005) 882-891.
[17]
Christel, M.G., Hauptmann, A.G.: The use and utility of high-level semantic features in video retrieval. In: Conf. on Image and Video Retrieval, Singapore (2005) 134-144.

Cited By

View all
  • (2020)Shuffled ImageNet Banks for Video Event Detection and SearchACM Transactions on Multimedia Computing, Communications, and Applications10.1145/337787516:2(1-21)Online publication date: 22-May-2020
  • (2018)Learning a Multi-Concept Video Retrieval Model with Multiple Latent VariablesACM Transactions on Multimedia Computing, Communications, and Applications10.1145/317664714:2(1-21)Online publication date: 25-Apr-2018
  • (2017)Semantic Reasoning in Zero Example Video Event RetrievalACM Transactions on Multimedia Computing, Communications, and Applications10.1145/313128813:4(1-17)Online publication date: 4-Oct-2017
  • Show More Cited By
  1. Video retrieval using high level features: exploiting query matching and confidence-based weighting

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    CIVR'06: Proceedings of the 5th international conference on Image and Video Retrieval
    July 2006
    546 pages
    ISBN:3540360182
    • Editors:
    • Hari Sundaram,
    • Milind Naphade,
    • John R. Smith,
    • Yong Rui

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 13 July 2006

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 08 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2020)Shuffled ImageNet Banks for Video Event Detection and SearchACM Transactions on Multimedia Computing, Communications, and Applications10.1145/337787516:2(1-21)Online publication date: 22-May-2020
    • (2018)Learning a Multi-Concept Video Retrieval Model with Multiple Latent VariablesACM Transactions on Multimedia Computing, Communications, and Applications10.1145/317664714:2(1-21)Online publication date: 25-Apr-2018
    • (2017)Semantic Reasoning in Zero Example Video Event RetrievalACM Transactions on Multimedia Computing, Communications, and Applications10.1145/313128813:4(1-17)Online publication date: 4-Oct-2017
    • (2016)Web video categorization using category-predictive classifiers and category-specific concept classifiersNeurocomputing10.1016/j.neucom.2016.06.004214:C(175-190)Online publication date: 19-Nov-2016
    • (2014)Composite Concept Discovery for Zero-Shot Video Event DetectionProceedings of International Conference on Multimedia Retrieval10.1145/2578726.2578746(17-24)Online publication date: 1-Apr-2014
    • (2014)Memory recall based video searchACM Transactions on Multimedia Computing, Communications, and Applications10.1145/253440910:2(1-21)Online publication date: 14-Feb-2014
    • (2014)Relevance Ranking for Vertical Search EnginesundefinedOnline publication date: 14-Feb-2014
    • (2013)Zero-shot video retrieval using content and conceptsProceedings of the 22nd ACM international conference on Information & Knowledge Management10.1145/2505515.2507880(1857-1860)Online publication date: 27-Oct-2013
    • (2011)Learning concept bundles for video search with complex queriesProceedings of the 19th ACM international conference on Multimedia10.1145/2072298.2072357(453-462)Online publication date: 28-Nov-2011
    • (2011)Coached active learning for interactive video searchProceedings of the 19th ACM international conference on Multimedia10.1145/2072298.2072356(443-452)Online publication date: 28-Nov-2011
    • Show More Cited By

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media