Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-030-01264-9_8guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

Published: 08 September 2018 Publication History

Abstract

Currently, the neural network architecture design is mostly guided by the indirect metric of computation complexity, i.e., FLOPs. However, the direct metric, e.g., speed, also depends on the other factors such as memory access cost and platform characterics. Thus, this work proposes to evaluate the direct metric on the target platform, beyond only considering FLOPs. Based on a series of controlled experiments, this work derives several practical guidelines for efficient network design. Accordingly, a new architecture is presented, called ShuffleNet V2. Comprehensive ablation experiments verify that our model is the state-of-the-art in terms of speed and accuracy tradeoff.

References

[1]
Chetlur, S., et al.: CUDNN: efficient primitives for deep learning. arXiv preprint arXiv:1410.0759 (2014)
[2]
Chollet, F.: Xception: deep learning with depthwise separable convolutions. arXiv preprint (2016)
[3]
Das, D., et al.: Distributed deep learning using synchronous stochastic gradient descent. arXiv preprint arXiv:1602.06709 (2016)
[4]
Deng, J., et al.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 248–255. IEEE (2009)
[5]
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
[6]
He K, Zhang X, Ren S, and Sun J Leibe B, Matas J, Sebe N, and Welling M Identity mappings in deep residual networks Computer Vision – ECCV 2016 2016 Cham Springer 630-645
[7]
He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: International Conference on Computer Vision (ICCV), vol. 2, p. 6 (2017)
[8]
Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
[9]
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. arXiv preprint arXiv:1709.01507 (2017)
[10]
Huang, G., Liu, S., van der Maaten, L., Weinberger, K.Q.: Condensenet: an efficient densenet using learned group convolutions. arXiv preprint arXiv:1711.09224 (2017)
[11]
Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, p. 3 (2017)
[12]
Ioannou, Y., Robertson, D., Cipolla, R., Criminisi, A.: Deep roots: improving CNN efficiency with hierarchical filter groups. arXiv preprint arXiv:1605.06489 (2016)
[13]
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)
[14]
Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. arXiv preprint arXiv:1405.3866 (2014)
[15]
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
[16]
Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: Light-head R-CNN: In defense of two-stage object detector. arXiv preprint arXiv:1711.07264 (2017)
[17]
Lin T-Y et al. Fleet D, Pajdla T, Schiele B, Tuytelaars T, et al. Microsoft COCO: common objects in context Computer Vision – ECCV 2014 2014 Cham Springer 740-755
[18]
Liu, C., et al.: Progressive neural architecture search. arXiv preprint arXiv:1712.00559 (2017)
[19]
Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2755–2763. IEEE (2017)
[20]
Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters-improve semantic segmentation by global convolutional network. arXiv preprint arXiv:1703.02719 (2017)
[21]
Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. arXiv preprint arXiv:1802.01548 (2018)
[22]
Real, E., et al.: Large-scale evolution of image classifiers. arXiv preprint arXiv:1703.01041 (2017)
[23]
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, and Bernstein M Imagenet large scale visual recognition challenge Int. J. Comput. Vis. 2015 115 3 211-252
[24]
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation. arXiv preprint arXiv:1801.04381 (2018)
[25]
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
[26]
Sun, K., Li, M., Liu, D., Wang, J.: Igcv 3: Interleaved low-rank group convolutions for efficient deep neural networks. arXiv preprint arXiv:1806.00178 (2018)
[27]
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI, vol. 4, p. 12 (2017)
[28]
Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)
[29]
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
[30]
Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: Advances in Neural Information Processing Systems, pp. 2074–2082 (2016)
[31]
Xie, G., Wang, J., Zhang, T., Lai, J., Hong, R., Qi, G.J.: IGCV 2: Interleaved structured sparse convolutional neural networks. arXiv preprint arXiv:1804.06202 (2018)
[32]
Xie, L., Yuille, A.: Genetic CNN. arXiv preprint arXiv:1703.01513 (2017)
[33]
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5987–5995. IEEE (2017)
[34]
Zhang, T., Qi, G.J., Xiao, B., Wang, J.: Interleaved group convolutions for deep neural networks. In: International Conference on Computer Vision (2017)
[35]
Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083 (2017)
[36]
Zhang X, Zou J, He K, and Sun J Accelerating very deep convolutional networks for classification and detection IEEE Trans. Pattern Anal. Mach. Intell. 2016 38 10 1943-1955
[37]
Zhang, X., Zou, J., Ming, X., He, K., Sun, J.: Efficient and accurate approximations of nonlinear convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1984–1992 (2015)
[38]
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)
[39]
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. arXiv preprint arXiv:1707.07012 (2017)

Cited By

View all
  • (2025)Algorithm-Hardware Co-design for Accelerating Depthwise Separable CNNsACM Transactions on Design Automation of Electronic Systems10.1145/3711846Online publication date: 9-Jan-2025
  • (2025)An evolutionary deep learning approach using flexible variable-length dynamic stochastic search for anomaly detection of robot jointsApplied Soft Computing10.1016/j.asoc.2024.112493168:COnline publication date: 1-Jan-2025
  • (2025)Real-time recognition method for PCB chip targets based on YOLO-GSGJournal of Real-Time Image Processing10.1007/s11554-024-01616-422:1Online publication date: 1-Jan-2025
  • Show More Cited By

Index Terms

  1. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Guide Proceedings
          Computer Vision – ECCV 2018: 15th European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part XIV
          Sep 2018
          844 pages
          ISBN:978-3-030-01263-2
          DOI:10.1007/978-3-030-01264-9

          Publisher

          Springer-Verlag

          Berlin, Heidelberg

          Publication History

          Published: 08 September 2018

          Author Tags

          1. CNN architecture design
          2. Efficiency
          3. Practical

          Qualifiers

          • Article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 02 Feb 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2025)Algorithm-Hardware Co-design for Accelerating Depthwise Separable CNNsACM Transactions on Design Automation of Electronic Systems10.1145/3711846Online publication date: 9-Jan-2025
          • (2025)An evolutionary deep learning approach using flexible variable-length dynamic stochastic search for anomaly detection of robot jointsApplied Soft Computing10.1016/j.asoc.2024.112493168:COnline publication date: 1-Jan-2025
          • (2025)Real-time recognition method for PCB chip targets based on YOLO-GSGJournal of Real-Time Image Processing10.1007/s11554-024-01616-422:1Online publication date: 1-Jan-2025
          • (2025)LSDNet: lightweight stochastic depth network for human pose estimationThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03323-441:1(257-270)Online publication date: 1-Jan-2025
          • (2024)Learning 1-bit tiny object detector with discriminative feature refinementProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3694351(55337-55347)Online publication date: 21-Jul-2024
          • (2024)MH-pFLIDProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3694314(54561-54575)Online publication date: 21-Jul-2024
          • (2024)Bridging model heterogeneity in federated learning via uncertainty-based asymmetrical reciprocity learningProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3694213(52290-52308)Online publication date: 21-Jul-2024
          • (2024)TinyTrainProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3693103(25812-25843)Online publication date: 21-Jul-2024
          • (2024)Do topological characteristics help in knowledge distillation?Proceedings of the 41st International Conference on Machine Learning10.5555/3692070.3693058(24674-24693)Online publication date: 21-Jul-2024
          • (2024)Leverage class-specific accuracy to guide data generation for improving image classificationProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3692647(14433-14452)Online publication date: 21-Jul-2024
          • Show More Cited By

          View Options

          View options

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media