Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-030-10801-4_17guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Separation Logic with Linearly Compositional Inductive Predicates and Set Data Constraints

Published: 27 January 2019 Publication History

Abstract

We identify difference-bound set constraints (DBS), an analogy of difference-bound arithmetic constraints for sets. DBS can express not only set constraints but also arithmetic constraints over set elements. We integrate DBS into separation logic with linearly compositional inductive predicates, obtaining a logic thereof where set data constraints of linear data structures can be specified. We show that the satisfiability of this logic is decidable. A crucial step of the decision procedure is to compute the transitive closure of DBS-definable set relations, to capture which we propose an extension of quantified set constraints with Presburger Arithmetic (RQSPA). The satisfiability of RQSPA is then shown to be decidable by harnessing advanced automata-theoretic techniques.

References

[1]
Bouajjani A, Drăgoi C, Enea C, and Sighireanu M Chakraborty S and Mukund M Accurate invariant checking for programs manipulating lists and arrays with infinite data Automated Technology for Verification and Analysis 2012 Heidelberg Springer 167-182
[2]
Bozga, M., Gîrlea, C., Iosif, R.: Iterating octagons. In: TACAS, pp. 337–351 (2009)
[3]
Bozga, M., Iosif, R., Konecný, F.: Fast acceleration of ultimately periodic relations. In: CAV, pp. 227–242 (2010)
[4]
Bozga M, Iosif R, and Lakhnech Y Flat parametric counter automata Fundam. Inf. 2009 91 2 275-303
[5]
Büchi RJ Weak Second-Order arithmetic and finite automata Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 1960 6 1–6 66-92
[6]
Cantone D, Cutello V, and Schwartz JT Börger E, Kleine Büning H, Richter MM, and Schönfeld W Decision problems for tarski and presburger arithmetics extended with sets Computer Science Logic 1991 Heidelberg Springer 95-109
[7]
Chin W-N, David C, Nguyen HH, and Qin S Automated verification of shape, size and bag properties via user-defined predicates in separation logic Sci. Comput. Program. 2012 77 9 1006-1036
[8]
Chu, D.-H., Jaffar, J., Trinh, M.-T.: Automatic induction proofs of data-structures in imperative programs. In: PLDI, pp. 457–466 (2015)
[9]
Comon H and Jurski Y Hu AJ and Vardi MY Multiple counters automata, safety analysis and presburger arithmetic Computer Aided Verification 1998 Heidelberg Springer 268-279
[10]
Cristiá M and Rossi G de Moura L A decision procedure for restricted intensional sets Automated Deduction – CADE 26 2017 Cham Springer 185-201
[11]
Elgot CC Decision problems of finite automata design and related arithmetics Trans. Am. Math. Soc. 1961 98 1 21-51
[12]
Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Compositional entailment checking for a fragment of separation logic. In: APLAS, pp. 314–333 (2014)
[13]
Enea C, Sighireanu M, and Wu Z Finkbeiner B, Pu G, and Zhang L On automated lemma generation for separation logic with inductive definitions Automated Technology for Verification and Analysis 2015 Cham Springer 80-96
[14]
Gao, C., Chen, T., Wu, Z.: Separation logic with linearly compositional inductive predicates and set data constraints (full version). http://arxiv.org/abs/1811.00699
[15]
Gu X, Chen T, and Wu Z Olivetti N and Tiwari A A complete decision procedure for linearly compositional separation logic with data constraints Automated Reasoning 2016 Cham Springer 532-549
[16]
Halpern JY Presburger arithmetic with unary predicates is -complete J. Symb. Logic 1991 56 2 637-642
[17]
Horbach M, Voigt M, and Weidenbach C de Moura L On the combination of the Bernays–Schönfinkel–Ramsey fragment with simple linear integer arithmetic Automated Deduction – CADE 26 2017 Cham Springer 77-94
[18]
Klaedtke F and Rueß H Baeten JCM, Lenstra JK, Parrow J, and Woeginger GJ Monadic second-order logics with cardinalities Automata, Languages and Programming 2003 Heidelberg Springer 681-696
[19]
Konečný F Chechik M and Raskin J-F PTIME computation of transitive closures of octagonal relations Tools and Algorithms for the Construction and Analysis of Systems 2016 Heidelberg Springer 645-661
[20]
Kuncak V, Piskac R, and Suter P Dawar A and Veith H Ordered sets in the calculus of data structures Computer Science Logic 2010 Heidelberg Springer 34-48
[21]
Le QL, Sun J, and Chin W-N Chaudhuri S and Farzan A Satisfiability modulo heap-based programs Computer Aided Verification 2016 Cham Springer 382-404
[22]
Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures and data. In: POPL 2011, pp. 611–622. ACM (2011)
[23]
Madhusudan, P., Qiu, X., Stefanescu, A.: Recursive proofs for inductive tree data-structures. In: POPL, pp. 123–136 (2012)
[24]
Miné A Danvy O and Filinski A A new numerical abstract domain based on difference-bound matrices Programs as Data Objects 2001 Heidelberg Springer 155-172
[25]
O’Hearn P, Reynolds J, and Yang H Fribourg L Local reasoning about programs that alter data structures Computer Science Logic 2001 Heidelberg Springer 1-19
[26]
Piskac R, Wies T, and Zufferey D Sharygina N and Veith H Automating separation logic using SMT Computer Aided Verification 2013 Heidelberg Springer 773-789
[27]
Piskac R, Wies T, and Zufferey D Biere A and Bloem R Automating separation logic with trees and data Computer Aided Verification 2014 Cham Springer 711-728
[28]
Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: LICS, pp. 55–74 (2002)
[29]
Seidl H, Schwentick T, Muscholl A, and Habermehl P Díaz J, Karhumäki J, Lepistö A, and Sannella D Counting in trees for free Automata, Languages and Programming 2004 Heidelberg Springer 1136-1149
[30]
Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with abstractions. In: POPL 2010, pp. 199–210. ACM (2010)
[31]
Tatsuta M, Le QL, and Chin W-N Igarashi A Decision procedure for separation logic with inductive definitions and presburger arithmetic Programming Languages and Systems 2016 Cham Springer 423-443
[32]
Voigt M Dixon C and Finger M The Bernays–Schönfinkel–Ramsey fragment with bounded difference constraints over the reals is decidable Frontiers of Combining Systems 2017 Cham Springer 244-261
[33]
Wies T, Piskac R, and Kuncak V Ghilardi S and Sebastiani R Combining theories with shared set operations Frontiers of Combining Systems 2009 Heidelberg Springer 366-382
[34]
Xu Z, Chen T, and Wu Z de Moura L Satisfiability of compositional separation logic with tree predicates and data constraints Automated Deduction – CADE 26 2017 Cham Springer 509-527

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
SOFSEM 2019: Theory and Practice of Computer Science: 45th International Conference on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia, January 27-30, 2019, Proceedings
Jan 2019
547 pages
ISBN:978-3-030-10800-7
DOI:10.1007/978-3-030-10801-4

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 27 January 2019

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 02 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media