Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-030-45442-5_1guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned

Published: 14 April 2020 Publication History

Abstract

In this work, we focus on the problem of entity alignment in Knowledge Graphs (KG) and we report on our experiences when applying a Graph Convolutional Network (GCN) based model for this task. Variants of GCN are used in multiple state-of-the-art approaches and therefore it is important to understand the specifics and limitations of GCN-based models. Despite serious efforts, we were not able to fully reproduce the results from the original paper and after a thorough audit of the code provided by authors, we concluded, that their implementation is different from the architecture described in the paper. In addition, several tricks are required to make the model work and some of them are not very intuitive.We provide an extensive ablation study to quantify the effects these tricks and changes of architecture have on final performance. Furthermore, we examine current evaluation approaches and systematize available benchmark datasets.We believe that people interested in KG matching might profit from our work, as well as novices entering the field. (Code: https://github.com/Valentyn1997/kg-alignment-lessons-learned).

References

[1]
Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z, et al. Aberer K et al. DBpedia: a nucleus for a web of open data The Semantic Web 2007 Heidelberg Springer 722-735
[2]
Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a Meeting, Lake Tahoe, Nevada, United States, 5–8 December 2013. pp. 2787–2795 (2013). http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data
[3]
Cao, Y., Liu, Z., Li, C., Liu, Z., Li, J., Chua, T.: Multi-channel graph neural network for entity alignment. In: Korhonen et al. [10], pp. 1452–1461. https://www.aclweb.org/anthology/P19-1140/
[4]
Chen, M., Tian, Y., Chang, K., Skiena, S., Zaniolo, C.: Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment. In: Lang [12], pp. 3998–4004.
[5]
Chen, M., Tian, Y., Yang, M., Zaniolo, C.: Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In: Sierra [16], pp. 1511–1517.
[6]
Fey, M., Lenssen, J.E., Morris, C., Masci, J., Kriege, N.M.: Deep graph matching consensus. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=HyeJf1HKvS
[7]
Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1263–1272. JMLR. org (2017)
[8]
Guo, L., Sun, Z., Hu, W.: Learning to exploit long-term relational dependencies in knowledge graphs. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning (ICML 2019), Long Beach, California, USA, 9–15 June 2019. Proceedings of Machine Learning Research, vol. 97, pp. 2505–2514. PMLR (2019). http://proceedings.mlr.press/v97/guo19c.html
[9]
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
[10]
Korhonen, A., Traum, D.R., Màrquez, L. (eds.): Proceedings of the 57th Conference of the Association for Computational Linguistics (ACL 2019), Florence, Italy, 28 July – 2 August 2019, Volume 1: Long Papers. Association for Computational Linguistics (2019). https://www.aclweb.org/anthology/volumes/P19-1/
[11]
Kraus, S. (ed.): Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI 2019), Macao, China, 10–16 August 2019. ijcai.org (2019).
[12]
Lang, J. (ed.): Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI 2018), Stockholm, Sweden, 13–19 July 2018. ijcai.org (2018). http://www.ijcai.org/proceedings/2018/
[13]
Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: a knowledge base from multilingual wikipedias. In: Seventh Biennial Conference on Innovative Data Systems Research (CIDR 2015), Asilomar, CA, USA, 4–7 January 2015, Online Proceedings. www.cidrdb.org (2015). http://cidrdb.org/cidr2015/Papers/CIDR15_Paper1.pdf
[14]
Nickel M, Murphy K, Tresp V, and Gabrilovich E A review of relational machine learning for knowledge graphs Proc. IEEE 2015 104 1 11-33
[15]
Pei, S., Yu, L., Hoehndorf, R., Zhang, X.: Semi-supervised entity alignment via knowledge graph embedding with awareness of degree difference. In: Liu, L., et al. (eds.) The World Wide Web Conference (WWW 2019), San Francisco, CA, USA, 13–17 May 2019, pp. 3130–3136. ACM (2019).
[16]
Sierra, C. (ed.): Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI 2017), Melbourne, Australia, 19–25 August 2017. ijcai.org (2017). http://www.ijcai.org/Proceedings/2017/
[17]
Singhal, A.: Introducing the knowledge graph: things, not strings. Official Google Blog 5, (2012)
[18]
Sun Z, Hu W, Li C, et al. d’Amato C et al. Cross-lingual entity alignment via joint attribute-preserving embedding The Semantic Web – ISWC 2017 2017 Cham Springer 628-644
[19]
Sun, Z., Hu, W., Zhang, Q., Qu, Y.: Bootstrapping entity alignment with knowledge graph embedding. In: Lang [12], pp. 4396–4402.
[20]
Trisedya, B.D., Qi, J., Zhang, R.: Entity alignment between knowledge graphs using attribute embeddings. In: The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI 2019), The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI 2019), Honolulu, Hawaii, USA, 27 January – 1 February 2019, pp. 297–304. AAAI Press (2019). https://aaai.org/ojs/index.php/AAAI/article/view/3798
[21]
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
[22]
Wang, Z., Lv, Q., Lan, X., Zhang, Y.: Cross-lingual knowledge graph alignment via graph convolutional networks. In: Riloff, E., Chiang, D., Hockenmaier, J., Tsujii, J. (eds.) Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October – 4 November 2018, pp. 349–357. Association for Computational Linguistics (2018). https://www.aclweb.org/anthology/D18-1032/
[24]
Xu, K., et al.: Cross-lingual knowledge graph alignment via graph matching neural network. In: Korhonen et al. [10], pp. 3156–3161 (2019). https://www.aclweb.org/anthology/P19-1304/. arXiv preprint arXiv:1905.11605
[25]
Zhang, Q., Sun, Z., Hu, W., Chen, M., Guo, L., Qu, Y.: Multi-view knowledge graph embedding for entity alignment. In: Kraus [11], pp. 5429–5435.
[26]
Zhu, H., Xie, R., Liu, Z., Sun, M.: Iterative entity alignment via joint knowledge embeddings. In: Sierra [17], pp. 4258–4264.
[27]
Zhu, Q., Zhou, X., Wu, J., Tan, J., Guo, L.: Neighborhood-aware attentional representation for multilingual knowledge graphs. In: Kraus [11], pp. 1943–1949.

Cited By

View all
  • (2021)Graph Semantics Based Neighboring Attentional Entity Alignment for Knowledge GraphsIntelligent Computing Theories and Application10.1007/978-3-030-84529-2_30(355-367)Online publication date: 12-Aug-2021
  • (2021)A Critical Assessment of State-of-the-Art in Entity AlignmentAdvances in Information Retrieval10.1007/978-3-030-72240-1_2(18-32)Online publication date: 28-Mar-2021

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part II
Apr 2020
708 pages
ISBN:978-3-030-45441-8
DOI:10.1007/978-3-030-45442-5

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 14 April 2020

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Graph Semantics Based Neighboring Attentional Entity Alignment for Knowledge GraphsIntelligent Computing Theories and Application10.1007/978-3-030-84529-2_30(355-367)Online publication date: 12-Aug-2021
  • (2021)A Critical Assessment of State-of-the-Art in Entity AlignmentAdvances in Information Retrieval10.1007/978-3-030-72240-1_2(18-32)Online publication date: 28-Mar-2021

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media