Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-030-58604-1_43guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Online Continual Learning Under Extreme Memory Constraints

Published: 23 August 2020 Publication History

Abstract

Continual Learning (CL) aims to develop agents emulating the human ability to sequentially learn new tasks while being able to retain knowledge obtained from past experiences. In this paper, we introduce the novel problem of Memory-Constrained Online Continual Learning (MC-OCL) which imposes strict constraints on the memory overhead that a possible algorithm can use to avoid catastrophic forgetting. As most, if not all, previous CL methods violate these constraints, we propose an algorithmic solution to MC-OCL: Batch-level Distillation (BLD), a regularization-based CL approach, which effectively balances stability and plasticity in order to learn from data streams, while preserving the ability to solve old tasks through distillation. Our extensive experimental evaluation, conducted on three publicly available benchmarks, empirically demonstrates that our approach successfully addresses the MC-OCL problem and achieves comparable accuracy to prior distillation methods requiring higher memory overhead (Code available at https://github.com/DonkeyShot21/batch-level-distillation).

References

[1]
Aljundi R, Babiloni F, Elhoseiny M, Rohrbach M, and Tuytelaars T Ferrari V, Hebert M, Sminchisescu C, and Weiss Y Memory aware synapses: learning what (not) to forget Computer Vision – ECCV 2018 2018 Cham Springer 144-161
[2]
Aljundi, R., et al.: Online continual learning with maximal interfered retrieval. In: NeurIPS, pp. 11849–11860 (2019)
[3]
Aljundi, R., Kelchtermans, K., Tuytelaars, T.: Task-free continual learning. In: CVPR (2019)
[4]
Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for online continual learning. In: NeurIPS (2019)
[5]
Castro FM, Marín-Jiménez MJ, Guil N, Schmid C, and Alahari K Ferrari V, Hebert M, Sminchisescu C, and Weiss Y End-to-end incremental learning Computer Vision – ECCV 2018 2018 Cham Springer 241-257
[6]
Cermelli, F., Mancini, M., Bulo, S.R., Ricci, E., Caputo, B.: Modeling the background for incremental learning in semantic segmentation. In: CVPR, pp. 9233–9242 (2020)
[7]
Chaudhry A, Dokania PK, Ajanthan T, and Torr PHS Ferrari V, Hebert M, Sminchisescu C, and Weiss Y Riemannian walk for incremental learning: understanding forgetting and intransigence Computer Vision – ECCV 2018 2018 Cham Springer 556-572
[8]
Dhar, P., Singh, R.V., Peng, K.C., Wu, Z., Chellappa, R.: Learning without memorizing. In: CVPR (2019)
[9]
Duda RO, Hart PE, and Stork DG Pattern Classification 2000 2 New York Wiley
[10]
Farquhar, S., Gal, Y.: Towards robust evaluations of continual learning. arXiv preprint arXiv:1805.09733 (2018)
[11]
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
[12]
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. stat (2015)
[13]
Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: CVPR (2019)
[14]
Javed, K., White, M.: Meta-learning representations for continual learning. In: NeurIPS, pp. 1820–1830 (2019)
[15]
Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. In: PNAS (2017)
[16]
Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report (2009)
[17]
Lange, M.D., et al.: Continual learning: a comparative study on how to defy forgetting in classification tasks. arXiv:1909.08383 (2019)
[18]
LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/exdb/mnist/
[19]
Lee, S., Ha, J., Zhang, D., Kim, G.: A neural dirichlet process mixture model for task-free continual learning. In: ICLR (2020)
[20]
Li Z and Hoiem D Learning without forgetting IEEE T-PAMI 2017 40 12 2935-2947
[21]
Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: NIPS (2017)
[22]
Mallya, A., Lazebnik, S.: PackNet: adding multiple tasks to a single network by iterative pruning. In: CVPR (2018)
[23]
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS (2011)
[24]
Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P., Nabi, M.: Learning to remember: a synaptic plasticity driven framework for continual learning. In: CVPR (2019)
[25]
Paszke, A., et al.: Automatic differentiation in pytorch (2017)
[26]
Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: CVPR (2017)
[27]
Riemer, M., et al.: Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv preprint arXiv:1810.11910 (2018)
[28]
Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)
[29]
Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: NeurIPS (2017)
[30]
Wu, C., Herranz, L., Liu, X., van de Weijer, J., Raducanu, B., et al.: Memory replay GANs: learning to generate new categories without forgetting. In: NeurIPS (2018)
[31]
Wu, Y., et al.: Large scale incremental learning. In: CVPR (2019)

Cited By

View all
  • (2024)Progressive Prototype Evolving for Dual-Forgetting Mitigation in Non-Exemplar Online Continual LearningProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3681234(2477-2486)Online publication date: 28-Oct-2024
  • (2024)Personalized Federated Domain-Incremental Learning Based on Adaptive Knowledge MatchingComputer Vision – ECCV 202410.1007/978-3-031-72952-2_8(127-144)Online publication date: 29-Sep-2024
  • (2023)Real-time online unsupervised domain adaptation for real-world person re-identificationJournal of Real-Time Image Processing10.1007/s11554-023-01362-z20:6Online publication date: 24-Sep-2023
  • Show More Cited By

Index Terms

  1. Online Continual Learning Under Extreme Memory Constraints
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII
        Aug 2020
        829 pages
        ISBN:978-3-030-58603-4
        DOI:10.1007/978-3-030-58604-1

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 23 August 2020

        Author Tags

        1. Continual Learning
        2. Online learning
        3. Memory efficient

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 08 Mar 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Progressive Prototype Evolving for Dual-Forgetting Mitigation in Non-Exemplar Online Continual LearningProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3681234(2477-2486)Online publication date: 28-Oct-2024
        • (2024)Personalized Federated Domain-Incremental Learning Based on Adaptive Knowledge MatchingComputer Vision – ECCV 202410.1007/978-3-031-72952-2_8(127-144)Online publication date: 29-Sep-2024
        • (2023)Real-time online unsupervised domain adaptation for real-world person re-identificationJournal of Real-Time Image Processing10.1007/s11554-023-01362-z20:6Online publication date: 24-Sep-2023
        • (2022)Latent Coreset Sampling based Data-Free Continual LearningProceedings of the 31st ACM International Conference on Information & Knowledge Management10.1145/3511808.3557375(2077-2087)Online publication date: 17-Oct-2022
        • (2022)Lie group continual meta learning algorithmApplied Intelligence10.1007/s10489-021-03036-452:10(10965-10978)Online publication date: 18-Jan-2022

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media