Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-030-58621-8_16guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

From Shadow Segmentation to Shadow Removal

Published: 23 August 2020 Publication History

Abstract

The requirement for paired shadow and shadow-free images limits the size and diversity of shadow removal datasets and hinders the possibility of training large-scale, robust shadow removal algorithms. We propose a shadow removal method that can be trained using only shadow and non-shadow patches cropped from the shadow images themselves. Our method is trained via an adversarial framework, following a physical model of shadow formation. Our central contribution is a set of physics-based constraints that enables this adversarial training. Our method achieves competitive shadow removal results compared to state-of-the-art methods that are trained with fully paired shadow and shadow-free images. The advantages of our training regime are even more pronounced in shadow removal for videos. Our method can be fine-tuned on a testing video with only the shadow masks generated by a pre-trained shadow detector and outperforms state-of-the-art methods on this challenging test. We illustrate the advantages of our method on our proposed video shadow removal dataset.

References

[1]
Arbel E and Hel-Or H Shadow removal using intensity surfaces and texture anchor points IEEE Trans. Pattern Anal. Mach. Intell. 2011 33 1202-1216
[2]
Choi, Y., Choi, M.J., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2017)
[3]
Chuang YY, Goldman DB, Curless B, Salesin DH, and Szeliski R Shadow matting and compositing ACM Trans. Graph. 2003 22 3 494-500 Special Issue of SIGGRAPH 2003 Proceeding
[4]
Dare P Shadow analysis in high-resolution satellite imagery of urban areas Photogram. Eng. Remote Sens. 2005 71 169-177
[5]
Ding, B., Long, C., Zhang, L., Xiao, C.: ARGAN: attentive recurrent generative adversarial network for shadow detection and removal. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10212–10221 (2019)
[6]
Drew, M.S.: Recovery of chromaticity image free from shadows via illumination invariance. In: IEEE Workshop on Color and Photometric Methods in Computer Vision, ICCV’03, pp. 32–39 (2003)
[7]
Finlayson, G., Drew, M.S.: 4-sensor camera calibration for image representation invariant to shading, shadows, lighting, and specularities. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 473–480 (2001).
[8]
Finlayson G, Hordley S, Lu C, and Drew M On the removal of shadows from images IEEE Trans. Pattern Anal. Mach. Intell. 2006 28 1 59-68
[9]
Finlayson C, Hordley SD, and Drew MS Heyden A, Sparr G, Nielsen M, and Johansen P Removing shadows from images Computer Vision – ECCV 2002 2002 Berlin, Heidelberg Springer 823-836
[10]
Fredembach, C., Finlayson, G.D.: Hamiltonian path based shadow removal. In: BMVC (2005)
[11]
Gong, H., Cosker, D.: Interactive removal and ground truth for difficult shadow scenes. J. Opt. Soc. Am. A 33(9), 1798–1811 (2016). http://josaa.osa.org/abstract.cfm?URI=josaa-33-9-1798
[12]
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)
[13]
Guo, R., Dai, Q., Hoiem, D.: Single-image shadow detection and removal using paired regions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2011)
[14]
Guo R, Dai Q, and Hoiem D Paired regions for shadow detection and removal IEEE Trans. Pattern Anal. Mach. Intell. 2012 35 12 2956-2967
[15]
Hu, X., Jiang, Y., Fu, C.W., Heng, P.A.: Mask-ShadowGAN: learning to remove shadows from unpaired data. In: ICCV (2019)
[16]
Hu, X., Wang, T., Fu, C.W., Jiang, Y., Wang, Q., Heng, P.A.: Revisiting shadow detection: a new benchmark dataset for complex world. arXiv:abs/1911.06998 (2019)
[17]
Hu, X., Zhu, L., Fu, C.W., Qin, J., Heng, P.A.: Direction-aware spatial context features for shadow detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
[18]
KaewTrakulPong, P., Bowden, R.: An improved adaptive background mixture model for real- time tracking with shadow detection (2002)
[19]
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (2015)
[20]
Le, H., Goncalves, B., Samaras, D., Lynch, H.: Weakly labeling the antarctic: the penguin colony case. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2019)
[21]
Le, H., Nguyen, V., Yu, C.P., Samaras, D.: Geodesic distance histogram feature for video segmentation. In: ACCV (2016)
[22]
Le, H., Samaras, D.: Shadow removal via shadow image decomposition. In: Proceedings of the International Conference on Computer Vision (2019)
[23]
Le, H., Vicente, T.F.Y., Nguyen, V., Hoai, M., Samaras, D.: A+D Net: training a shadow detector with adversarial shadow attenuation. In: Proceedings of the European Conference on Computer Vision (2018)
[24]
Le, H., Yu, C.P., Zelinsky, G., Samaras, D.: Co-localization with category-consistent features and geodesic distance propagation. In: ICCV 2017 Workshop on CEFRL: Compact and Efficient Feature Representation and Learning in Computer Vision (2017)
[25]
Li Y, Tang S, Zhang R, Zhang Y, Li J, and Yan S Asymmetric gan for unpaired image-to-image translation IEEE Trans. Image Process. 2019 28 5881-5896
[26]
Liu F and Gleicher M Forsyth D, Torr P, and Zisserman A Texture-consistent shadow removal Computer Vision – ECCV 2008 2008 Berlin, Heidelberg Springer 437-450
[27]
Liu, H., Gu, X., Samaras, D.: Wasserstein GAN with quadratic transport cost. In: The IEEE International Conference on Computer Vision (ICCV) (2019)
[28]
Liu, H., Xianfeng, G., Samaras, D.: A two-step computation of the exact GAN Wasserstein distance. In: International Conference on Machine Learning, pp. 3165–3174 (2018)
[29]
Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. arXiv:abs/1703.00848 (2017)
[30]
Mescheder, L., Nowozin, S., Geiger, A.: Which training methods for GANs do actually converge? In: International Conference on Machine Learning (2018)
[31]
Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: International Conference on Machine Learning (2018)
[32]
Müller, T., Erdnüeß, B.: Brightness correction and shadow removal for video change detection with UAVs. In: Defense + Commercial Sensing (2019)
[33]
Panagopoulos A, Wang C, Samaras D, and Paragios N Kutulakos KN Estimating shadows with the bright channel cue Trends and Topics in Computer Vision – ECCV 2010 2010 Berlin, Heidelberg Springer 1-12
[34]
Panagopoulos A, Wang C, Samaras D, and Paragios N Simultaneous cast shadows, illumination and geometry inference using hypergraphs IEEE Trans. Pattern Anal. Mach. Intell. 2013 35 2 437-449
[35]
Porter T and Duff T Compositing digital images Proc. ACM SIGGRAPH Conf. Comput. Graph. 1984 18 3 1-12
[36]
Prati A, Mikic I, Trivedi MM, and Cucchiara R Detecting moving shadows: algorithms and evaluation IEEE Trans. Pattern Anal. Mach. Intell. 2003 25 918-923
[37]
Qu, L., Tian, J., He, S., Tang, Y., Lau, R.W.H.: DeshadowNet: a multi-context embedding deep network for shadow removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
[38]
Shiting, W., Hong, Z.: Clustering-based shadow edge detection in a single color image. In: International Conference on Mechatronic Sciences, Electric Engineering and Computer, pp. 1038–1041 (2013).
[39]
Shor Y and Lischinski D The shadow meets the mask: pyramid-based shadow removal Comput. Graph. Forum 2008 27 2 577-586
[40]
Smith, A.R., Blinn, J.F.: Blue screen matting. In: Proceedings of the ACM SIGGRAPH Conference on Computer Graphics (1996)
[41]
Su N, Zhang Y, Tian S, Yan Y, and Miao X Shadow detection and removal for occluded object information recovery in urban high-resolution panchromatic satellite images IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016 9 2568-2582
[42]
Thanh-Tung, H., Tran, T., Venkatesh, S.: Improving generalization and stability of generative adversarial networks. In: International Conference on Learning Representations (2019)
[43]
Vicente, T.F.Y., Hoai, M., Samaras, D.: Noisy label recovery for shadow detection in unfamiliar domains. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
[44]
Vicente TFY, Hoai M, and Samaras D Leave-one-out kernel optimization for shadow detection and removal IEEE Transactions on Pattern Analysis and Machine Intelligence 2018 40 3 682-695
[45]
Vicente, T.F.Y., Hou, L., Yu, C.P., Hoai, M., Samaras, D.: Large-scale training of shadow detectors with noisily-annotated shadow examples. In: Proceedings of the European Conference on Computer Vision (2016)
[46]
Vicente, T.F.Y., Samaras, D.: Single image shadow removal via neighbor-based region relighting. In: Proceedings of the European Conference on Computer Vision Workshops (2014)
[47]
Wang, J., Li, X., Yang, J.: Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
[48]
Wang, T., Hu, X., Wang, Q., Heng, P.A., Fu, C.W.: Instance shadow detection. In: CVPR (2020)
[49]
Wright, S.: Digital Compositing for Film and Video. Focal Press (2001)
[50]
Wu, Q., Zhang, W.,Vijay Kumar, B.V.K.: Strong shadow removal via patch-based shadow edge detection. In: 2012 IEEE International Conference on Robotics and Automation, pp. 2177–2182 (2012)
[51]
Wu, T.P., Tang, C.K.: A Bayesian approach for shadow extraction from a single image. In: Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. 1 1, pp. 480–487 (2005)
[52]
Wu, T.P., Tang, C.K., Brown, M.S., Shum, H.Y.: Natural shadow matting. ACM Trans. Graph. 26, 2 (2007). http://doi.acm.org/10.1145/1243980.1243982
[53]
Yang Q, Tan K, and Ahuja N Shadow removal using bilateral filtering IEEE Trans. Image Process. 2012 21 4361-4368
[54]
Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for image-to-image translation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2868–2876 (2017)
[55]
Zhang, L., Long, C., Zhang, X., Xiao, C.: RIS-GAN: explore residual and illumination with generative adversarial networks for shadow removal. In: AAAI Conference on Artificial Intelligence (AAAI) (2020)
[56]
Zhang W, Zhao X, Morvan JM, and Chen L Improving shadow suppression for illumination robust face recognition IEEE Trans. Pattern Anal. Mach. Intell. 2019 41 611-624
[57]
Zheng, Q., Qiao, X., Cao, Y., Lau, R.W.H.: Distraction-aware shadow detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5162–5171 (2019)
[58]
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)
[59]
Zhu, L., et al.: Bidirectional feature pyramid network with recurrent attention residual modules for shadow detection. In: Proceedings of the European Conference on Computer Vision (2018)

Cited By

View all
  • (2024)ADSP: Advanced Dataset for Shadow Processing, Enabling Visible Occluders via Synthesizing StrategyComputer Vision – ACCV 202410.1007/978-981-96-0917-8_19(329-347)Online publication date: 8-Dec-2024
  • (2024)Weighting Pseudo-labels via High-Activation Feature Index Similarity and Object Detection for Semi-supervised SegmentationComputer Vision – ECCV 202410.1007/978-3-031-73226-3_26(456-474)Online publication date: 29-Sep-2024
  • (2024)ObjectDrop: Bootstrapping Counterfactuals for Photorealistic Object Removal and InsertionComputer Vision – ECCV 202410.1007/978-3-031-72980-5_7(112-129)Online publication date: 29-Sep-2024
  • Show More Cited By

Index Terms

  1. From Shadow Segmentation to Shadow Removal
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI
        Aug 2020
        857 pages
        ISBN:978-3-030-58620-1
        DOI:10.1007/978-3-030-58621-8

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 23 August 2020

        Author Tags

        1. Shadow removal
        2. GAN
        3. Weakly-supervised
        4. Illumination model
        5. Unpaired
        6. Image-to-image

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 10 Feb 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)ADSP: Advanced Dataset for Shadow Processing, Enabling Visible Occluders via Synthesizing StrategyComputer Vision – ACCV 202410.1007/978-981-96-0917-8_19(329-347)Online publication date: 8-Dec-2024
        • (2024)Weighting Pseudo-labels via High-Activation Feature Index Similarity and Object Detection for Semi-supervised SegmentationComputer Vision – ECCV 202410.1007/978-3-031-73226-3_26(456-474)Online publication date: 29-Sep-2024
        • (2024)ObjectDrop: Bootstrapping Counterfactuals for Photorealistic Object Removal and InsertionComputer Vision – ECCV 202410.1007/978-3-031-72980-5_7(112-129)Online publication date: 29-Sep-2024
        • (2024)Towards Image Ambient Lighting NormalizationComputer Vision – ECCV 202410.1007/978-3-031-72897-6_22(385-404)Online publication date: 29-Sep-2024
        • (2023)FSR-Net: Deep Fourier Network for Shadow RemovalProceedings of the 31st ACM International Conference on Multimedia10.1145/3581783.3612359(2335-2343)Online publication date: 26-Oct-2023
        • (2022)Unsupervised Textured Terrain Generation via Differentiable RenderingProceedings of the 30th ACM International Conference on Multimedia10.1145/3503161.3548297(2654-2662)Online publication date: 10-Oct-2022
        • (2022)Single Image Shadow Detection via Complementary MechanismProceedings of the 30th ACM International Conference on Multimedia10.1145/3503161.3547904(6717-6726)Online publication date: 10-Oct-2022
        • (2022)MGRLN-Net: Mask-Guided Residual Learning Network for Joint Single-Image Shadow Detection and RemovalComputer Vision – ACCV 202210.1007/978-3-031-26313-2_28(460-476)Online publication date: 4-Dec-2022
        • (2022)Style-Guided Shadow RemovalComputer Vision – ECCV 202210.1007/978-3-031-19800-7_21(361-378)Online publication date: 23-Oct-2022

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media