Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-030-81685-8_40guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs

Published: 20 July 2021 Publication History

Abstract

This paper presents PAYNT, a tool to automatically synthesise probabilistic programs. PAYNT enables the synthesis of finite-state probabilistic programs from a program sketch representing a finite family of program candidates. A tight interaction between inductive oracle-guided methods with state-of-the-art probabilistic model checking is at the heart of PAYNT. These oracle-guided methods effectively reason about all possible candidates and synthesise programs that meet a given specification formulated as a conjunction of temporal logic constraints and possibly including an optimising objective. We demonstrate the performance and usefulness of PAYNT using several case studies from different application domains; e.g., we find the optimal randomized protocol for network stabilisation among 3M potential programs within minutes, whereas alternative approaches would need days to do so.

References

[1]
Ábrahám E, Becker B, Dehnert C, Jansen N, Katoen J-P, and Wimmer R Bernardo M, Damiani F, Hähnle R, Johnsen EB, and Schaefer I Counterexample generation for discrete-time Markov models: an introductory survey Formal Methods for Executable Software Models 2014 Cham Springer 65-121
[2]
Alur, R., et al.: Syntax-guided synthesis. In: Proceedings of the IEEE International Conference on Formal Methods in Computer-Aided Design (FMCAD), pp. 1–17, October 2013
[3]
Andriushchenko R, Češka M, Junges S, and Katoen J-P Inductive synthesis for probabilistic programs reaches new horizons Tools and Algorithms for the Construction and Analysis of Systems 2021 Cham Springer 191-209
[4]
Bartocci E, Grosu R, Katsaros P, Ramakrishnan CR, and Smolka SA Abdulla PA and Leino KRM Model repair for probabilistic systems Tools and Algorithms for the Construction and Analysis of Systems 2011 Heidelberg Springer 326-340
[5]
Benini L, Bogliolo A, Paleologo GA, and Micheli GD Policy optimization for dynamic power management IEEE Trans. CAD Integr. Circ. Syst. 1999 18 6 813-833
[6]
Bruna, M., Grigore, R., Kiefer, S., Ouaknine, J., Worrell, J.: Proving the Herman-protocol conjecture. In: ICALP, LIPIcs, vol. 55, pp. 104:1–104:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)
[7]
Budde CE, Dehnert C, Hahn EM, Hartmanns A, Junges S, and Turrini A Legay A and Margaria T JANI: quantitative model and tool interaction Tools and Algorithms for the Construction and Analysis of Systems 2017 Heidelberg Springer 151-168
[8]
Calinescu R, Češka M, Gerasimou S, Kwiatkowska M, and Paoletti N Efficient synthesis of robust models for stochastic systems J. Syst. Softw. 2018 143 140-158
[9]
Calinescu R, Češka M, Gerasimou S, Kwiatkowska M, and Paoletti N Bertrand N and Bortolussi L RODES: a robust-design synthesis tool for probabilistic systems Quantitative Evaluation of Systems 2017 Cham Springer 304-308
[10]
Češka M, Dannenberg F, Paoletti N, Kwiatkowska M, and Brim L Precise parameter synthesis for stochastic biochemical systems Acta Inf. 2017 54 6 589-623
[11]
Češka M, Hensel C, Junges S, and Katoen J-P ter Beek MH, McIver A, and Oliveira JN Counterexample-driven synthesis for probabilistic program sketches Formal Methods – The Next 30 Years 2019 Cham Springer 101-120
[12]
Češka M, Jansen N, Junges S, and Katoen J-P Vojnar T and Zhang L Shepherding hordes of Markov chains Tools and Algorithms for the Construction and Analysis of Systems 2019 Cham Springer 172-190
[13]
Chonev V Filiot E, Jungers R, and Potapov I Reachability in augmented interval Markov chains Reachability Problems 2019 Cham Springer 79-92
[14]
Chrszon P, Dubslaff C, Klüppelholz S, and Baier C ProFeat: feature-oriented engineering for family-based probabilistic model checking Formal Asp. Comput. 2018 30 1 45-75
[15]
Classen A, Cordy M, Heymans P, Legay A, and Schobbens PY Model checking software product lines with SNIP Int. J. Softw. Tools Technol. Transf. 2012 14 589-612
[16]
Daws C Liu Z and Araki K Symbolic and parametric model checking of discrete-time Markov chains Theoretical Aspects of Computing - ICTAC 2004 2005 Heidelberg Springer 280-294
[17]
Dehnert C, Jansen N, Wimmer R, Ábrahám E, and Katoen J-P Cassez F and Raskin J-F Fast debugging of PRISM models Automated Technology for Verification and Analysis 2014 Cham Springer 146-162
[18]
Dehnert C et al. Kroening D, Păsăreanu CS, et al. PROPhESY: a probabilistic parameter synthesis tool Computer Aided Verification 2015 Cham Springer 214-231
[19]
Dehnert C, Junges S, Katoen J-P, and Volk M Majumdar R and Kunčak V A storm is coming: a modern probabilistic model checker Computer Aided Verification 2017 Cham Springer 592-600
[20]
Dijkstra EW Self-stabilizing systems in spite of distributed control Commun. ACM 1974 17 11 643-644
[21]
Gerasimou, S., Tamburrelli, G., Calinescu, R.: Search-based synthesis of probabilistic models for quality-of-service software engineering (t). In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 319–330, November 2015
[22]
Gerasimou S, Calinescu R, and Tamburrelli G Synthesis of probabilistic models for quality-of-service software engineering Autom. Softw. Eng. 2018 25 4 785-831
[23]
Ghezzi C and Sharifloo AM Model-based verification of quantitative non-functional properties for software product lines Inf. Softw. Technol. 2013 55 3 508-524
[24]
Hahn EM et al. Beyer D, Huisman M, Kordon F, Steffen B, et al. The 2019 comparison of tools for the analysis of quantitative formal models Tools and Algorithms for the Construction and Analysis of Systems 2019 Cham Springer 69-92
[25]
Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. Int. J. Softw. Tools Technol. Transf. 13(1), 3–19 (2011)
[26]
Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: Trends, techniques and applications. ACM Comp. Surv. 45(1), 11:1–11:61 (2012)
[27]
Hartmanns A and Hermanns H Ábrahám E and Havelund K The modest toolset: an integrated environment for quantitative modelling and verification Tools and Algorithms for the Construction and Analysis of Systems 2014 Heidelberg Springer 593-598
[28]
Herman T Probabilistic self-stabilization Inf. Process. Lett. 1990 35 2 63-67
[29]
Hutschenreiter L, Baier C, and Klein J Parametric markov chains: PCTL complexity and fraction-free Gaussian elimination GandALF. EPTCS 2017 256 16-30
[30]
Inala, J.P., Bastani, O., Tavares, Z., Solar-Lezama, A.: Synthesizing programmatic policies that inductively generalize. In: ICLR (2020)
[31]
Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based program synthesis. In: ICSE, pp. 215–224. ACM (2010)
[32]
Jha S and Seshia SA A theory of formal synthesis via inductive learning Acta Informatica 2017 54 7 693-726
[33]
Kaelbling LP, Littman ML, and Cassandra AR Planning and acting in partially observable stochastic domains Artif. Intell. 1998 101 1–2 99-134
[34]
Kwiatkowska M, Norman G, and Parker D Probabilistic verification of Herman’s self-stabilisation algorithm Formal Aspects Comput. 2012 24 4 661-670
[35]
Kwiatkowska M, Norman G, and Parker D Gopalakrishnan G and Qadeer S PRISM 4.0: verification of probabilistic real-time systems Computer Aided Verification 2011 Heidelberg Springer 585-591
[36]
Lanna A, Castro T, Alves V, Rodrigues G, Schobbens PY, and Apel S Feature-family-based reliability analysis of software product lines Inf. Softw. Technol. 2018 94 59-81
[37]
Lindemann C Performance modelling with deterministic and stochastic Petri nets SIGMETRICS Perform. Eval. Rev. 1998 26 2 3
[38]
Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve software architecture models for performance, reliability, and cost using evolutionary algorithms. In: WOSP/SIPEW, pp. 105–116. ACM (2010)
[39]
Nori, A.V., Ozair, S., Rajamani, S.K., Vijaykeerthy, D.: Efficient synthesis of probabilistic programs. In: PLDI, pp. 208–217. ACM (2015)
[40]
Pathak S, Ábrahám E, Jansen N, Tacchella A, and Katoen J-P Havelund K, Holzmann G, and Joshi R A greedy approach for the efficient repair of stochastic models NASA Formal Methods 2015 Cham Springer 295-309
[41]
Peters, T.: The Zen of Python. PEP 20 (2004). https://www.python.org/dev/peps/pep-0020/
[42]
Quatmann T, Dehnert C, Jansen N, Junges S, and Katoen J-P Artho C, Legay A, and Peled D Parameter synthesis for Markov models: faster than ever Automated Technology for Verification and Analysis 2016 Cham Springer 50-67
[43]
van Rossum, G., Warsaw, B., Coghlan, N.: Style guide for Python code. PEP 8 (2001). https://www.python.org/dev/peps/pep-0008/
[44]
Saad, F.A., Cusumano-Towner, M.F., Schaechtle, U., Rinard, M.C., Mansinghka, V.K.: Bayesian synthesis of probabilistic programs for automatic data modeling. In: Proceedings of the ACM on Programming Languages, vol. 3(POPL), pp. 1–32 (2019)
[45]
Solar-Lezama, A.: Program synthesis by sketching. Ph.D. thesis, USA (2008)
[46]
Solar-Lezama, A., Rabbah, R., Bodík, R., Ebcioğlu, K.: Programming by sketching for bit-streaming programs. In: PLDI, pp. 281–294. ACM (2005)
[47]
Vandin A, ter Beek MH, Legay A, and Lluch Lafuente A Havelund K, Peleska J, Roscoe B, and de Vink E QFLan: a tool for the quantitative analysis of highly reconfigurable systems Formal Methods 2018 Cham Springer 329-337
[48]
Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically interpretable reinforcement learning. In: International Conference on Machine Learning, pp. 5045–5054. PMLR (2018)
[49]
Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.P., Becker, B.: High-level counterexamples for probabilistic automata. Logical Meth. Comput. Sci. 11(1) (2015)

Cited By

View all
  • (2024)Probabilistic Loop Synthesis from Sequences of MomentsQuantitative Evaluation of Systems and Formal Modeling and Analysis of Timed Systems10.1007/978-3-031-68416-6_14(233-248)Online publication date: 10-Sep-2024
  • (2024)Tools at the Frontiers of Quantitative VerificationTOOLympics Challenge 202310.1007/978-3-031-67695-6_4(90-146)Online publication date: 26-Apr-2024
  • (2024)Learning Explainable and Better Performing Representations of POMDP StrategiesTools and Algorithms for the Construction and Analysis of Systems10.1007/978-3-031-57249-4_15(299-319)Online publication date: 6-Apr-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Computer Aided Verification: 33rd International Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part I
Jul 2021
938 pages
ISBN:978-3-030-81684-1
DOI:10.1007/978-3-030-81685-8
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 20 July 2021

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Probabilistic Loop Synthesis from Sequences of MomentsQuantitative Evaluation of Systems and Formal Modeling and Analysis of Timed Systems10.1007/978-3-031-68416-6_14(233-248)Online publication date: 10-Sep-2024
  • (2024)Tools at the Frontiers of Quantitative VerificationTOOLympics Challenge 202310.1007/978-3-031-67695-6_4(90-146)Online publication date: 26-Apr-2024
  • (2024)Learning Explainable and Better Performing Representations of POMDP StrategiesTools and Algorithms for the Construction and Analysis of Systems10.1007/978-3-031-57249-4_15(299-319)Online publication date: 6-Apr-2024
  • (2024)CTMCs with Imprecisely Timed ObservationsTools and Algorithms for the Construction and Analysis of Systems10.1007/978-3-031-57249-4_13(258-278)Online publication date: 6-Apr-2024
  • (2023)Deductive Controller Synthesis for Probabilistic HyperpropertiesQuantitative Evaluation of Systems10.1007/978-3-031-43835-6_20(288-306)Online publication date: 20-Sep-2023
  • (2023)Search and Explore: Symbiotic Policy Synthesis in POMDPsComputer Aided Verification10.1007/978-3-031-37709-9_6(113-135)Online publication date: 17-Jul-2023
  • (2022)Out of Control: Reducing Probabilistic Models by Control-State EliminationVerification, Model Checking, and Abstract Interpretation10.1007/978-3-030-94583-1_22(450-472)Online publication date: 16-Jan-2022

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media