Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-030-86523-8_17guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Bayesian Optimization with a Prior for the Optimum

Published: 13 September 2021 Publication History
  • Get Citation Alerts
  • Abstract

    While Bayesian Optimization (BO) is a very popular method for optimizing expensive black-box functions, it fails to leverage the experience of domain experts. This causes BO to waste function evaluations on bad design choices (e.g., machine learning hyperparameters) that the expert already knows to work poorly. To address this issue, we introduce Bayesian Optimization with a Prior for the Optimum (BOPrO). BOPrO allows users to inject their knowledge into the optimization process in the form of priors about which parts of the input space will yield the best performance, rather than BO’s standard priors over functions, which are much less intuitive for users. BOPrO then combines these priors with BO’s standard probabilistic model to form a pseudo-posterior used to select which points to evaluate next. We show that BOPrO is around 6.67× faster than state-of-the-art methods on a common suite of benchmarks, and achieves a new state-of-the-art performance on a real-world hardware design application. We also show that BOPrO converges faster even if the priors for the optimum are not entirely accurate and that it robustly recovers from misleading priors.

    References

    [1]
    Balandat, M., et al.: BoTorch: a framework for efficient Monte-Carlo Bayesian optimization. In: Advances in Neural Information Processing Systems (2020)
    [2]
    Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: International Conference on Machine Learning (2013)
    [3]
    Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems (2011)
    [4]
    Bouthillier, X., Varoquaux, G.: Survey of machine-learning experimental methods at NeurIPS2019 and ICLR2020. Research report, Inria Saclay Ile de France (January 2020). https://hal.archives-ouvertes.fr/hal-02447823
    [5]
    Calandra R, Seyfarth A, Peters J, and Deisenroth MP Bayesian optimization for learning gaits under uncertainty Ann. Math. Artif. Intell. 2016 76 1–2 5-23
    [6]
    Chen, Y., Huang, A., Wang, Z., Antonoglou, I., Schrittwieser, J., Silver, D., de Freitas, N.: Bayesian optimization in AlphaGo. CoRR abs/1812.06855 (2018)
    [7]
    Clarke, A., McMahon, B., Menon, P., Patel, K.: Optimizing hyperparams for image datasets in Fastai (2020). https://www.platform.ai/post/optimizing-hyperparams-for-image-datasets-in-fastai
    [8]
    Dixon, L.C.W.: The global optimization problem: an introduction. In: Toward Global Optimization 2, pp. 1–15 (1978)
    [9]
    Eriksson, D., Pearce, M., Gardner, J.R., Turner, R., Poloczek, M.: Scalable global optimization via local Bayesian optimization. In: Advances in Neural Information Processing Systems (2019)
    [10]
    Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter optimization at scale. In: International Conference on Machine Learning (2018)
    [11]
    Feurer, M., Springenberg, J.T., Hutter, F.: Initializing bayesian hyperparameter optimization via meta-learning. In: AAAI Conference on Artificial Intelligence (2015)
    [12]
    Gardner, J.R., Kusner, M.J., Xu, Z.E., Weinberger, K.Q., Cunningham, J.P.: Bayesian optimization with inequality constraints. In: International Conference on Machine Learning (ICML) (2014)
    [13]
    Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.: Google Vizier: a service for black-box optimization. In: SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)
    [14]
    GPy: GPy: a Gaussian process framework in Python (since 2012). http://github.com/SheffieldML/GPy
    [15]
    Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of IEEE International Conference on Evolutionary Computation (1996)
    [16]
    Hansen, N., Akimoto, Y., Baudis, P.: CMA-ES/pycma on GitHub
    [17]
    Hernández-Lobato, J.M., Hoffman, M.W., Ghahramani, Z.: Predictive entropy search for efficient global optimization of black-box functions. In: Advances in Neural Information Processing Systems (2014)
    [18]
    Hutter F, Xu L, Hoos H, and Leyton-Brown K Algorithm runtime prediction: methods & evaluation Artif. Intell. 2014 206 79-111
    [19]
    Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Learning and Intelligent Optimization Conference (2011)
    [20]
    Hutter F, Kotthoff L, and Vanschoren J Automated Machine Learning: Methods, Systems, Challenges 2019 Cham Springer
    [21]
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)
    [22]
    Klein, A., Dai, Z., Hutter, F., Lawrence, N.D., Gonzalez, J.: Meta-surrogate benchmarking for hyperparameter optimization. In: Advances in Neural Information Processing Systems (2019)
    [23]
    Koeplinger, D., et al.: Spatial: a language and compiler for application accelerators. In: SIGPLAN Conference on Programming Language Design and Implementation (2018)
    [24]
    Kushner HJ A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise J. Basic Eng. 1964 86 1 97-106
    [25]
    Li, C., Gupta, S., Rana, S., Nguyen, V., Robles-Kelly, A., Venkatesh, S.: Incorporating expert prior knowledge into experimental design via posterior sampling. arXiv preprint arXiv:2002.11256 (2020)
    [26]
    Lindauer, M., Eggensperger, K., Feurer, M., Falkner, S., Biedenkapp, A., Hutter, F.: SMAC v3: algorithm configuration in Python (2017). https://github.com/automl/SMAC3
    [27]
    Lindauer, M., Hutter, F.: Warmstarting of model-based algorithm configuration. In: AAAI Conference on Artificial Intelligence (2018)
    [28]
    López-Ibáñez M, Dubois-Lacoste J, Pérez Cáceres L, Stützle T, and Birattari M The irace package: iterated racing for automatic algorithm configuration Oper. Res. Perspect. 2016 3 43-58
    [29]
    Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum. In: Towards Global Optimization 2, pp. 117–129 (1978)
    [30]
    Nardi, L., Bodin, B., Saeedi, S., Vespa, E., Davison, A.J., Kelly, P.H.: Algorithmic performance-accuracy trade-off in 3d vision applications using hypermapper. In: International Parallel and Distributed Processing Symposium Workshops (2017)
    [31]
    Nardi, L., Koeplinger, D., Olukotun, K.: Practical design space exploration. In: International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (2019)
    [32]
    Neal, R.M.: Bayesian Learning for Neural Networks, vol. 118. Springer, New York (1996).
    [33]
    Oh, C., Gavves, E., Welling, M.: BOCK: Bayesian optimization with cylindrical kernels. In: International Conference on Machine Learning (2018)
    [34]
    Paleyes, A., Pullin, M., Mahsereci, M., Lawrence, N., González, J.: Emulation of physical processes with Emukit. In: Workshop on Machine Learning and the Physical Sciences, NeurIPS (2019)
    [35]
    Pedregosa F et al. Scikit-learn: machine learning in Python J. Mach. Learn. Res. 2011 12 2825-2830
    [36]
    Perrone, V., Shen, H., Seeger, M., Archambeau, C., Jenatton, R.: Learning search spaces for Bayesian optimization: another view of hyperparameter transfer learning. In: Advances in Neural Information Processing Systems (2019)
    [37]
    Ramachandran A, Gupta S, Rana S, Li C, and Venkatesh S Incorporating expert prior in Bayesian optimisation via space warping Knowl. Based Syst. 2020 195 105663
    [38]
    Shahriari, B., Bouchard-Côté, A., Freitas, N.: Unbounded Bayesian optimization via regularization. In: Artificial Intelligence and Statistics. pp. 1168–1176 (2016)
    [39]
    Shahriari B, Swersky K, Wang Z, Adams RP, and De Freitas N Taking the human out of the loop: a review of Bayesian optimization Proc. IEEE 2015 104 1 148-175
    [40]
    Siivola, E., Vehtari, A., Vanhatalo, J., González, J., Andersen, M.R.: Correcting boundary over-exploration deficiencies in Bayesian optimization with virtual derivative sign observations. In: International Workshop on Machine Learning for Signal Processing (2018)
    [41]
    Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems (2012)
    [42]
    Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Gaussian process optimization in the bandit setting: no regret and experimental design. In: International Conference on Machine Learning (2010)
    [43]
    Hutter F, Kotthoff L, and Vanschoren J Automated Machine Learning 2019 Cham Springer
    [44]
    Wang, Q., et al.: ATMSeer: increasing transparency and controllability in automated machine learning. In: CHI Conference on Human Factors in Computing Systems (2019)
    [45]
    Wu, J., Poloczek, M., Wilson, A.G., Frazier, P.I.: Bayesian optimization with gradients. In: Advances in Neural Information Processing Systems 30 (2017)

    Cited By

    View all
    • (2024)Consolidated learning: a domain-specific model-free optimization strategy with validation on metaMIMIC benchmarksMachine Language10.1007/s10994-023-06359-0113:7(4925-4949)Online publication date: 1-Jul-2024
    • (2023)PFNs4BOProceedings of the 40th International Conference on Machine Learning10.5555/3618408.3619464(25444-25470)Online publication date: 23-Jul-2023
    • (2023)BaCO: A Fast and Portable Bayesian Compiler Optimization FrameworkProceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 410.1145/3623278.3624770(19-42)Online publication date: 25-Mar-2023
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    Machine Learning and Knowledge Discovery in Databases. Research Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part III
    Sep 2021
    856 pages
    ISBN:978-3-030-86522-1
    DOI:10.1007/978-3-030-86523-8
    • Editors:
    • Nuria Oliver,
    • Fernando Pérez-Cruz,
    • Stefan Kramer,
    • Jesse Read,
    • Jose A. Lozano

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 13 September 2021

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Consolidated learning: a domain-specific model-free optimization strategy with validation on metaMIMIC benchmarksMachine Language10.1007/s10994-023-06359-0113:7(4925-4949)Online publication date: 1-Jul-2024
    • (2023)PFNs4BOProceedings of the 40th International Conference on Machine Learning10.5555/3618408.3619464(25444-25470)Online publication date: 23-Jul-2023
    • (2023)BaCO: A Fast and Portable Bayesian Compiler Optimization FrameworkProceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 410.1145/3623278.3624770(19-42)Online publication date: 25-Mar-2023
    • (2023)Homunculus: Auto-Generating Efficient Data-Plane ML Pipelines for Datacenter NetworksProceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 310.1145/3582016.3582022(329-342)Online publication date: 25-Mar-2023
    • (2022)Learning Skill-based Industrial Robot Tasks with User Priors2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)10.1109/CASE49997.2022.9926713(1485-1492)Online publication date: 20-Aug-2022

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media