Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-030-87993-8_4guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Zero-Knowledge Proof Protocol for Cryptarithmetic Using Dihedral Cards

Published: 18 October 2021 Publication History

Abstract

Cryptarithmetic, also known as Verbal Arithmetic or Word Addition, is a popular pencil puzzle in which the aim is to deduce which letter corresponds to which numeral, given a mathematical equation in which each numeral (from 0 to 9) has been replaced with a unique letter. The most famous instance of this puzzle is probably “SEND + MORE = MONEY", whose solution is “9567 + 1085 = 10652", i.e., S = 9, E = 5, N = 6, D = 7, M = 1, O = 0, R = 8, and Y = 2. In this study, we construct a physical zero-knowledge proof protocol for a Cryptarithmetic puzzle: That is, our protocol enables a prover who knows a solution to the puzzle to convince a verifier that he/she knows the solution without revealing any information about it. The proposed protocol uses a physical deck of “dihedral cards,” which were developed by Shinagawa in 2019.

References

[1]
Bultel, X., Dreier, J., Dumas, J.G., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In: Demaine, E.D., Grandoni, F. (eds.) Fun with Algorithms. Leibniz International Proceedings in Informatics (LIPIcs), vol. 49, pp. 8:1–8:20. Schloss Dagstuhl, Dagstuhl (2016). https://doi.org/10.4230/LIPIcs.FUN.2016.8
[2]
Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham (2018).
[3]
Chien Y-F and Hon W-K Boldi P and Gargano L Cryptographic and physical zero-knowledge proof: From sudoku to Nonogram Fun with Algorithms 2010 Heidelberg Springer 102-112
[4]
Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham (2019).
[5]
Epstein, D.: On the NP-completeness of cryptarithms. ACM SIGACT News 18(3), 38–40 (1987). https://doi.org/10.1145/24658.24662
[6]
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989). https://doi.org/10.1137/0218012
[7]
Gradwohl R, Naor M, Pinkas B, and Rothblum GN Crescenzi P, Prencipe G, and Pucci G Cryptographic and physical zero-knowledge proof systems for solutions of Sudoku puzzles Fun with Algorithms 2007 Heidelberg Springer 166-182
[8]
Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of Sudoku puzzles. Theor. Comput. Syst. 44(2), 245–268 (2009). https://doi.org/10.1007/s00224-008-9119-9
[9]
Ishikawa R, Chida E, and Mizuki T Calude CS and Dinneen MJ Efficient card-based protocols for generating a hidden random permutation without fixed points Unconventional Computation and Natural Computation 2015 Cham Springer 215-226
[10]
Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to construct physical zero-knowledge proofs for puzzles with a “single loop" condition. Theor. Comput. Sci. (2021, in press). https://doi.org/10.1016/j.tcs.2021.07.019
[11]
Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: A physical ZKP for Slitherlink: How to perform physical topology-preserving computation. In: Heng, S.-H., Lopez, J. (eds.) ISPEC 2019. LNCS, vol. 11879, pp. 135–151. Springer, Cham (2019).
[12]
Manabe, Y., Ono, H.: Card-based cryptographic protocols for three-input functions using private operations. In: Flocchini, P., Moura, L. (eds.) IWOCA 2021. LNCS, vol. 12757, pp. 469–484. Springer, Cham (2021).
[13]
Minhaz, A., Singh, A.V.: Solution of a classical cryptarithmetic problem by using parallel genetic algorithm. In: Reliability, Infocom Technologies and Optimization, pp. 1–5. IEEE (2014). https://doi.org/10.1109/ICRITO.2014.7014715
[14]
Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: Farach-Colton, M., Prencipe, G., Uehara, R. (eds.) Fun with Algorithms. Leibniz International Proceedings in Informatics (LIPIcs), vol. 157, pp. 20:1–20:21. Schloss Dagstuhl, Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.FUN.2021.20
[15]
Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for Kakuro. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 102(9), 1072–1078 (2019). https://doi.org/10.1587/transfun.E102.A.1072
[16]
Miyahara, D., Ueda, I., Hayashi, Y., Mizuki, T., Sone, H.: Analyzing execution time of card-based protocols. In: Stepney, S., Verlan, S. (eds.) UCNC 2018. LNCS, vol. 10867, pp. 145–158. Springer, Cham (2018).
[17]
Mizuki T, Asiedu IK, and Sone H Mauri G, Dennunzio A, Manzoni L, and Porreca AE Voting with a logarithmic number of cards Unconventional Computation and Natural Computation 2013 Heidelberg Springer 162-173
[18]
Nakai, T., Misawa, Y., Tokushige, Y., Iwamoto, M., Ohta, K.: How to solve millionaires’ problem with two kinds of cards. New Gener. Comput. 39(1), 73–96 (2021). https://doi.org/10.1007/s00354-020-00118-8
[19]
Nozaki Y, Hendrian D, Yoshinaka R, and Shinohara A Câmpeanu C Enumeration of cryptarithms using deterministic finite automata Implementation and Application of Automata 2018 Cham Springer 286-298
[20]
Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private operations. New Gener. Comput. 39(1), 19–40 (2021). https://doi.org/10.1007/s00354-020-00113-z
[21]
Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Interactive physical ZKP for connectivity: Applications to Nurikabe and Hitori. In: De Mol, L., Weiermann, A., Manea, F., Fernández-Duque, D. (eds.) Connecting with Computability. LNCS, vol. 12813, pp. 373–384. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80049-9_37
[22]
Ruangwises, S.: An improved physical ZKP for Nonogram (2021). https://arxiv.org/abs/2106.14020
[23]
Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for Sudoku (2021). https://arxiv.org/abs/2106.13646
[24]
Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink. In: Farach-Colton, M., Prencipe, G., Uehara, R. (eds.) Fun with Algorithms. Leibniz International Proceedings in Informatics (LIPIcs), vol. 157, pp. 22:1–22:11. Schloss Dagstuhl, Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.FUN.2021.22
[25]
Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink puzzle and k vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021). https://doi.org/10.1007/s00354-020-00114-y
[26]
Ruangwises S and Itoh T Uehara R, Hong S-H, and Nandy SC Physical zero-knowledge proof for Ripple Effect WALCOM: Algorithms and Computation 2021 Cham Springer 296-307
[27]
Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: applications to Bridges Puzzle and other problems. In: Unconventional Computation and Natural Computation. LNCS, Springer, Cham (2021, to appear)
[28]
Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020). https://doi.org/10.1016/j.tcs.2020.05.036
[29]
Sasaki, T., Mizuki, T., Sone, H.: Card-based zero-knowledge proof for Sudoku. In: Ito, H., Leonardi, S., Pagli, L., Prencipe, G. (eds.) Fun with Algorithms. Leibniz International Proceedings in Informatics (LIPIcs), vol. 100, pp. 29:1–29:10. Schloss Dagstuhl, Dagstuhl (2018). https://doi.org/10.4230/LIPIcs.FUN.2018.29
[30]
Shinagawa K Gopal TV and Watada J Card-based cryptography with invisible ink Theory and Applications of Models of Computation 2019 Cham Springer 566-577
[31]
Shinagawa, K.: Card-based cryptography with dihedral symmetry. New Gener. Comput. 39(1), 41–71 (2021). https://doi.org/10.1007/s00354-020-00117-9
[32]
Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E100.A(9), 1900–1909 (2017). https://doi.org/10.1587/transfun.E100.A.1900
[33]
Tamura, N.: Cryptarithmetic puzzle solver. https://tamura70.gitlab.io/web-puzzle/cryptarithm/. Accessed 21 Mar 2021
[34]
Torsten, S.: Alphametics and cryptarithms. https://www.math.uni-bielefeld.de/~sillke/PUZZLES/ALPHAMETIC/. Accessed 21 Mar 2021
[35]
Truman, C.: Alphametic puzzles. http://www.tkcs-collins.com/truman/alphamet/alphamet.shtml, Accessed 21 Mar 2021
[36]
Yasunaga, K.: Practical card-based protocol for three-input majority. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E103.A(11), 1296–1298 (2020). https://doi.org/10.1587/transfun.2020EAL2025

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Unconventional Computation and Natural Computation: 19th International Conference, UCNC 2021, Espoo, Finland, October 18–22, 2021, Proceedings
Oct 2021
214 pages
ISBN:978-3-030-87992-1
DOI:10.1007/978-3-030-87993-8

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 18 October 2021

Author Tags

  1. Cryptarithmetic
  2. Dihedral cards
  3. Physical zero-knowledge proof
  4. Card-based cryptography

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Card-Based Zero-Knowledge Proof Protocols for the 15-Puzzle and the Token Swapping ProblemProceedings of the 11th ACM Asia Public-Key Cryptography Workshop10.1145/3659467.3659905(11-22)Online publication date: 1-Jul-2024
  • (2024)Physical Zero-Knowledge Proof Protocols for Topswops and BotdropsNew Generation Computing10.1007/s00354-024-00272-342:3(399-428)Online publication date: 1-Sep-2024
  • (2024)Balance-Based ZKP Protocols for Pencil-and-Paper PuzzlesInformation Security10.1007/978-3-031-75757-0_11(211-231)Online publication date: 24-Oct-2024
  • (2023)Physical ZKP protocols for Nurimisaki and KurodokoTheoretical Computer Science10.1016/j.tcs.2023.114071972:COnline publication date: 13-Sep-2023
  • (2023)Check Alternating Patterns: A Physical Zero-Knowledge Proof for Moon-or-SunAdvances in Information and Computer Security10.1007/978-3-031-41326-1_14(255-272)Online publication date: 29-Aug-2023
  • (2022)Card-Based ZKP for Connectivity: Applications to Nurikabe, Hitori, and HeyawakeNew Generation Computing10.1007/s00354-022-00155-540:1(149-171)Online publication date: 14-Mar-2022
  • (2022)Card-Based Zero-Knowledge Proof Protocol for Pancake SortingInnovative Security Solutions for Information Technology and Communications10.1007/978-3-031-32636-3_13(222-239)Online publication date: 8-Dec-2022
  • (2022)Physical Zero-Knowledge Proof Protocol for TopswopsInformation Security Practice and Experience10.1007/978-3-031-21280-2_30(537-553)Online publication date: 23-Nov-2022
  • (2022)Card-Based ZKP Protocol for NurimisakiStabilization, Safety, and Security of Distributed Systems10.1007/978-3-031-21017-4_19(285-298)Online publication date: 15-Nov-2022
  • (2022)Card-Minimal Protocols for Three-Input Functions with Standard Playing CardsProgress in Cryptology - AFRICACRYPT 202210.1007/978-3-031-17433-9_19(448-468)Online publication date: 18-Jul-2022

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media