Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-030-93489-7_16guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Improved Constructions for Succinct Affine Automata

Published: 05 September 2021 Publication History

Abstract

Affine finite automata (AfAs) can be more succinct than probabilistic and quantum finite automata when recognizing some regular languages with bounded error. In this paper, we improve previously known succinct AFA constructions in three ways. First, we replace some of the fixed error bounds with arbitrarily small error bounds. Second, we present new constructions by using fewer states than the previous constructions. Third, we show that any language recognized by a nondeterministic finite automaton (NFA) is also recognized by bounded-error AfAs having one more state, and so, AfAs inherit all succinct results by NFAs. As a special case, we also show that any language recognized by an NFA is recognized by AfAs with zero error if the number of accepting path(s) for each member is the same number.

References

[1]
Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: FOCS’98, pp. 332–341. IEEE (1998)
[2]
Ambainis, A.: The complexity of probabilistic versus deterministic finite automata. In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano, S., Suri, S. (eds.) ISAAC 1996. LNCS, vol. 1178, pp. 233–238. Springer, Heidelberg (1996).
[3]
Ambainis A and Yakaryılmaz A Superiority of exact quantum automata for promise problems Inf. Process. Lett. 2012 112 7 289-291
[4]
Ambainis, A., Yakaryılmaz, A.: Automata and quantum computing. In: Éric Pin, J. (ed.) Handbook of Automata Theory, vol. 2, chap. 39, pp. 1457–1493. European Mathematical Society Publishing House (2021)
[5]
Belovs A, Montoya JA, and Yakaryılmaz A On a conjecture by Christian Choffrut Int. J. Found. Comput. Sci. 2017 28 5 483-502
[6]
Díaz-Caro, A., Yakaryılmaz, A.: Affine Computation and Affine Automaton. In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 146–160. Springer, Cham (2016).
[7]
Geffert V and Yakaryılmaz A Classical automata on promise problems Discrete Math. Theoret. Comput. Sci. 2015 17 2 157-180
[8]
Hirvensalo M Interference as a computational resource: a tutorial Nat. Comput. 2017 17 1 201-219
[9]
Hirvensalo, M., Moutot, E., Yakaryılmaz, A.: On the Computational power of affine automata. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 405–417. Springer, Cham (2017).
[10]
Hirvensalo, M., Moutot, E., Yakaryılmaz, A.: Computational Limitations of Affine Automata. In: McQuillan, I., Seki, S. (eds.) UCNC 2019. LNCS, vol. 11493, pp. 108–121. Springer, Cham (2019).
[11]
Hirvensalo, M., Moutot, E., Yakaryılmaz, A.: computational limitations of affine automata and generalized affine automata. Nat. Comput. 20(1), 1–12 (2021).
[12]
Ibrahimov, R., Khadiev, K., Prūsis, K., Yakaryılmaz, A.: Error-Free Affine, Unitary, and Probabilistic OBDDs. In: Konstantinidis, S., Pighizzini, G. (eds.) DCFS 2018. LNCS, vol. 10952, pp. 175–187. Springer, Cham (2018).
[13]
Ibrahimov R, Khadiev K, Prūsis K, and Yakaryılmaz A Error-free affine, unitary, and probabilistic OBDDs Int. J. Found. Comput. Sci. 2021
[14]
Khadieva, A., Yakaryılmaz, A.: Affine automata verifiers. In: Kostitsyna, I., Orponen, P. (eds.) UCNC 2021. LNCS, vol. 12984, pp. 84–100. Springer, Cham (2021)
[15]
Klauck, H.: On quantum and probabilistic communication: Las Vegas and one-way protocols. In: STOC’00: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 644–651 (2000)
[16]
Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: FOCS 1997, pp. 66–75 (1997)
[17]
Li L, Qiu D, Zou X, Li L, Wu L, and Mateus P Characterizations of one-way general quantum finite automata Theoret. Comput. Sci. 2012 419 73-91
[18]
Nakanishi, M., Khadiev, K., Prūsis, K., Vihrovs, J., Yakaryılmaz, A.: Exact affine counter automata. In: 15th International Conference on Automata and Formal Languages. EPTCS, vol. 252, pp. 205–218 (2017). arXiv:1703.04281
[19]
Paz A Introduction to Probabilistic Automata 1971 New York Academic Press
[20]
Rabin MO Probabilistic automata Inf. Control 1963 6 230-243
[21]
Say ACC and Yakaryılmaz A Calude CS, Freivalds R, and Kazuo I Quantum finite automata: a modern introduction Computing with New Resources 2014 Cham Springer 208-222
[22]
Turakainen P Generalized automata and stochastic languages Proc. Am. Math. Soc. 1969 21 303-309
[23]
Villagra M and Yakaryılmaz A Amos M and Condon A Language recognition power and succinctness of affine automata Unconventional Computation and Natural Computation 2016 Cham Springer 116-129
[24]
Villagra M and Yakaryılmaz A Language recognition power and succinctness of affine automata Nat. Comput. 2017 17 2 283-293
[25]
Yakaryılmaz A and Say ACC Languages recognized by nondeterministic quantum finite automata Quant. Inf. Comput. 2010 10 9&10 747-770
[26]
Yakaryılmaz A and Say ACC Succinctness of two-way probabilistic and quantum finite automata Discrete Math. Theoret. Comput. Sci. 2010 12 2 19-40
[27]
Yakaryılmaz A and Say ACC Unbounded-error quantum computation with small space bounds Inf. Comput. 2011 279 6 873-892

Index Terms

  1. Improved Constructions for Succinct Affine Automata
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        Descriptional Complexity of Formal Systems: 23rd IFIP WG 1.02 International Conference, DCFS 2021, Virtual Event, September 5, 2021, Proceedings
        Sep 2021
        209 pages
        ISBN:978-3-030-93488-0
        DOI:10.1007/978-3-030-93489-7
        • Editors:
        • Yo-Sub Han,
        • Sang-Ki Ko

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 05 September 2021

        Author Tags

        1. Succinctness
        2. State complexity
        3. Affine automata
        4. Quantum automata
        5. Probabilistic automata
        6. Linear systems
        7. Bounded error
        8. One-sided error
        9. Zero error

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 01 Jan 2025

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media