Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-06555-2_27guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

A Comprehensive Comparison of Open-Source Libraries for Handwritten Text Recognition in Norwegian

Published: 22 May 2022 Publication History

Abstract

In this paper, we introduce an open database of historical handwritten documents fully annotated in Norwegian, the first of its kind, allowing the development of handwritten text recognition models (HTR) in Norwegian. In order to evaluate the performance of state-of-the-art HTR models on this new base, we conducted a systematic survey of open-source HTR libraries published between 2019 and 2021, identified ten libraries and selected four of them to train HTR models. We trained twelve models in different configurations and compared their performance on both random and scripter-based data splitting. The best recognition results were obtained by the PyLaia and Kaldi libraries which have different and complementary characteristics, suggesting that they should be combined to further improve the results.

References

[1]
Arora, A., et al.: Using ASR methods for OCR. In: International Conference on Document Analysis and Recognition (2019)
[2]
Augustin, E., Brodin, J.M., Carré, M., Geoffrois, E., Grosicki, E., Prêteux, F.: RIMES evaluation campaign for handwritten mail processing. In: International Conference on Document Analysis and Recognition, p. 5 (2006)
[3]
Chammas, E., Mokbel, C., Likforman-Sulem, L.: Handwriting recognition of historical documents with few labeled data. In: International Workshop on Document Analysis Systems, pp. 43–48. IEEE (2018)
[4]
Coquenet, D., Chatelain, C., Paquet, T.: Recurrence-free unconstrained handwritten text recognition using gated fully convolutional network. In: International Conference on Frontiers in Handwriting Recognition, pp. 19–24 (2020)
[5]
Coquenet, D., Chatelain, C., Paquet, T.: End-to-end handwritten paragraph text recognition using a vertical attention network. IEEE Trans. Pattern Anal. Mach. Intell. (2022)
[6]
Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: International Conference on Machine Learning, pp. 369–376 (2006)
[7]
Hegghammer, T.: OCR with tesseract, Amazon textract, and Google document AI: a benchmarking experiment. J. Comput. Soc. Sci. (2021)
[8]
Hodel T, Schoch D, Schneider C, and Purcell J General models for handwritten text recognition: feasibility and state-of-the art. German kurrent as an example J. Open Humanit. Data 2021 7 13 1-10
[9]
Hussain R, Raza A, Siddiqi I, et al. A comprehensive survey of handwritten document benchmarks: structure, usage and evaluation J. Image Video Proc. 2015 2015 46
[10]
Jørgensen, F., Aasmoe, T., Ruud Husevåg, A.S., Øvrelid, L., Velldal, E.: NorNE: annotating named entities for Norwegian. In: Language Resources and Evaluation Conference (2020)
[11]
Kang, L., Riba, P., Rusiñol, M., Fornés, A., Villegas, M.: Distilling content from style for handwritten word recognition. In: International Conference on Frontiers in Handwriting Recognition (2020)
[12]
Kang L, Toledo JI, Riba P, Villegas M, Fornés A, and Rusiñol M Brox T, Bruhn A, and Fritz M Convolve, attend and spell: an attention-based sequence-to-sequence model for handwritten word recognition Pattern Recognition 2019 Cham Springer 459-472
[13]
Kiessling, B., Tissot, R., Stokes, P., Stökl Ben Ezra, D.: eScriptorium: an open source platform for historical document analysis. In: International Conference on Document Analysis and Recognition Workshops, vol. 2, p. 19 (2019)
[14]
Kummervold, P.E., de la Rosa, J., Wetjen, F., Brygfjeld, S.A.: Operationalizing a national digital library: the case for a norwegian transformer model. In: Nordic Conference on Computational Linguistics (2021)
[15]
Li, M., et al.: Trocr: transformer-based optical character recognition with pre-trained models (2021). https://arxiv.org/abs/2109.10282
[16]
Marti UV and Bunke H The IAM-database: an English sentence database for offline handwriting recognition IJDAR 2002 5 39-46
[17]
Michael, J., Weidemann, M., Labahn, R.: Htr engine based on nns p 3 optimizing speed and performance-htr +. Technical report, READ-H2020 Project 674943 (2018)
[18]
Muehlberger, G., et al.: Transforming scholarship in the archives through handwritten text recognition: transkribus as a case study. J. Doc. (2019)
[19]
Nesse A and Sandøy H Norsk Språkhistorie IV: Tidslinjer 2018 Oslo Novus
[20]
Neto, A.F.S., Bezerra, B.L.D., Toselli, A.H., Lima, E.B.: HTR-flor++: a handwritten text recognition system based on a pipeline of optical and language models. In: ACM Symposium on Document Engineering (2020)
[21]
Nguyen, T.T.H., Jatowt, A., Coustaty, M., Nguyen, N.V., Doucet, A.: Deep statistical analysis of OCR rrrors for effective post-OCR processing. In: Joint Conference on Digital Libraries (2019)
[22]
Ortiz, P., Burud, S.: Bert attends the conversation: improving low-resource conversational asr (2021). https://arxiv.org/abs/2110.02267
[23]
Povey, D., et al.: Purely sequence-trained neural networks for asr based on lattice-free mmi. In: Interspeech, pp. 2751–2755 (2016)
[24]
Puigcerver, J., Mocholí, C.: PyLaia (2018). https://github.com/jpuigcerver/PyLaia
[25]
Strauß, T., Leifert, G., Labahn, R., Mühlberger, G.: Competition on automated text recognition on a read dataset. In: International Conference on Frontiers in Handwriting Recognition (2018)
[26]
Sánchez JA, Romero V, Toselli A, Villegas M, and Vidal E A set of benchmarks for handwritten text recognition on historical documents Pattern Recogn. 2019 94 122-134
[27]
Toiganbayeva, N., et al.: KOHTD: kazakh offline handwritten text dataset (2021). https://arxiv.org/abs/2110.04075
[28]
Yousef, M., Bishop, T.E.: Origaminet: weakly-supervised, segmentation-free, one-step, full page textrecognition by learning to unfold. In: Conference on Computer Vision and Pattern Recognition (2020)

Cited By

View all
  • (2024)Revisiting N-Gram Models: Their Impact in Modern Neural Networks for Handwritten Text RecognitionDocument Analysis and Recognition - ICDAR 202410.1007/978-3-031-70552-6_10(167-182)Online publication date: 30-Aug-2024
  • (2024)Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source LibraryDocument Analysis and Recognition - ICDAR 202410.1007/978-3-031-70549-6_23(387-404)Online publication date: 30-Aug-2024
  • (2024)CATMuS Medieval: A Multilingual Large-Scale Cross-Century Dataset in Latin Script for Handwritten Text Recognition and BeyondDocument Analysis and Recognition - ICDAR 202410.1007/978-3-031-70543-4_11(174-194)Online publication date: 30-Aug-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Document Analysis Systems: 15th IAPR International Workshop, DAS 2022, La Rochelle, France, May 22–25, 2022, Proceedings
May 2022
794 pages
ISBN:978-3-031-06554-5
DOI:10.1007/978-3-031-06555-2

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 22 May 2022

Author Tags

  1. Handwriting recognition
  2. Norwegian language
  3. Open-source

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Revisiting N-Gram Models: Their Impact in Modern Neural Networks for Handwritten Text RecognitionDocument Analysis and Recognition - ICDAR 202410.1007/978-3-031-70552-6_10(167-182)Online publication date: 30-Aug-2024
  • (2024)Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source LibraryDocument Analysis and Recognition - ICDAR 202410.1007/978-3-031-70549-6_23(387-404)Online publication date: 30-Aug-2024
  • (2024)CATMuS Medieval: A Multilingual Large-Scale Cross-Century Dataset in Latin Script for Handwritten Text Recognition and BeyondDocument Analysis and Recognition - ICDAR 202410.1007/978-3-031-70543-4_11(174-194)Online publication date: 30-Aug-2024
  • (2023)Evaluation of Different Tagging Schemes for Named Entity Recognition in Handwritten DocumentsDocument Analysis and Recognition - ICDAR 202310.1007/978-3-031-41682-8_1(3-16)Online publication date: 21-Aug-2023
  • (2023)Consistent Nested Named Entity Recognition in Handwritten Documents via Lattice RescoringDocument Analysis and Recognition - ICDAR 202310.1007/978-3-031-41676-7_15(255-268)Online publication date: 21-Aug-2023
  • (2022)A survey of historical document image datasetsInternational Journal on Document Analysis and Recognition10.1007/s10032-022-00405-825:4(305-338)Online publication date: 1-Dec-2022

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media