Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-15565-9_8guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Semantic Web-Based Interoperability for Intelligent Agents with PSyKE

Published: 09 May 2022 Publication History

Abstract

Modern distributed systems require communicating agents to agree on a shared, formal semantics for the data they exchange and operate upon. The Semantic Web offers tools to encode semantics in the form of ontologies, where data is represented in the form of knowledge graphs (KG). Applying such tools to intelligent agents equipped with machine learning (ML) capabilities is of particular interest, as it may enable a higher degree of interoperability among heterogeneous agents. Indeed, inputs and outputs of ML models can be formalised through ontologies, while the data they operate upon can be represented as KG.
In this paper we explore the combination of Semantic Web tools with knowledge extraction—that is, a research line aimed at extracting intelligible rules mimicking the behaviour of ML predictors, with the purpose of explaining their behaviour. Along this line, we study whether and to what extent ontologies and KG can be exploited as both the source and the outcome of a rule extraction procedure. In other words, we investigate the extraction of semantic rules out of sub-symbolic predictors trained upon data as KG—possibly adhering to some ontology. In doing so, we extend our PSyKE framework for rule extraction with Semantic Web support. In practice, we make PSyKE able to (i) train ML predictors out of OWL ontologies and RDF knowledge graphs, and (ii) extract semantic knowledge out of them, in the form of SWRL rules. A discussion among the major benefits and issues of our approach is provided, along with a description of the overall workflow.

References

[1]
Andrews R, Diederich J, and Tickle AB Survey and critique of techniques for extracting rules from trained artificial neural networks Knowl.-Based Syst. 1995 8 6 373-389
[2]
Azcarraga, A., Liu, M.D., Setiono, R.: Keyword extraction using backpropagation neural networks and rule extraction. In: The 2012 International Joint Conference on Neural Networks (IJCNN 2012), pp. 1–7. IEEE (2012).
[3]
Baesens, B., Setiono, R., De Lille, V., Viaene, S., Vanthienen, J.: Building credit-risk evaluation expert systems using neural network rule extraction and decision tables. In: Storey, V.C., Sarkar, S., DeGross, J.I. (eds.) ICIS 2001 Proceedings, pp. 159–168. Association for Information Systems (2001). http://aisel.aisnet.org/icis2001/20
[4]
Baesens B, Setiono R, Mues C, and Vanthienen J Using neural network rule extraction and decision tables for credit-risk evaluation Manage. Sci. 2003 49 3 312-329
[5]
Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001). https://www.scientificamerican.com/article/the-semantic-web/
[6]
Bologna, G., Pellegrini, C.: Three medical examples in neural network rule extraction. Phys. Med. 13, 183–187 (1997). https://archive-ouverte.unige.ch/unige:121360
[7]
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press (1984)
[8]
Ciatto, G., Calegari, R., Omicini, A., Calvaresi, D.: Towards XMAS: eXplainability through Multi-Agent Systems. In: Savaglio, C., Fortino, G., Ciatto, G., Omicini, A. (eds.) AI &IoT 2019 - Artificial Intelligence and Internet of Things 2019, CEUR Workshop Proceedings, vol. 2502, pp. 40–53. Sun SITE Central Europe, RWTH Aachen University (2019), http://ceur-ws.org/Vol-2502/paper3.pdf
[9]
Ciatto G, Schumacher MI, Omicini A, and Calvaresi D Calvaresi D, Najjar A, Winikoff M, and Främling K Agent-based explanations in AI: towards an abstract framework Explainable, Transparent Autonomous Agents and Multi-Agent Systems 2020 Cham Springer 3-20
[10]
Craven, M.W., Shavlik, J.W.: Using sampling and queries to extract rules from trained neural networks. In: Machine Learning Proceedings 1994, pp. 37–45. Elsevier (1994).
[11]
Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained networks. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference, pp. 24–30. The MIT Press (1996). http://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks.pdf
[12]
d’Amato C Machine learning for the semantic web: lessons learnt and next research directions Semant. Web 2020 11 1 195-203
[13]
Franco L, Subirats JL, Molina I, Alba E, and Jerez JM Sandoval F, Prieto A, Cabestany J, and Graña M Early breast cancer prognosis prediction and rule extraction using a new constructive neural network algorithm Computational and Ambient Intelligence 2007 Heidelberg Springer 1004-1011
[14]
Freitas AA Comprehensible classification models: a position paper ACM SIGKDD Explor. Newsl. 2014 15 1 1-10
[15]
Glimm B, Horrocks I, Motik B, Stoilos G, and Wang Z HermiT: an OWL 2 reasoner J. Autom. Reason. 2014 53 3 245-269
[16]
Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, and Pedreschi D A survey of methods for explaining black box models ACM Comput. Surv. 2018 51 5 1-42
[17]
Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.: XAI - explainable artificial intelligence. Sci. Robot. 4(37) (2019).
[18]
Hayashi Y, Setiono R, and Yoshida K A comparison between two neural network rule extraction techniques for the diagnosis of hepatobiliary disorders Artif. Intell. Med. 2000 20 3 205-216
[19]
Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 web ontology language primer (second edition). W3C Recommendation 11 December 2012 (2012). https://www.w3.org/TR/owl2-primer
[20]
Hoekstra R The knowledge reengineering bottleneck Semant. Web 2010 1 1–2 111-115
[21]
Hofmann, A., Schmitz, C., Sick, B.: Rule extraction from neural networks for intrusion detection in computer networks. In: 2003 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1259–1265. IEEE (2003).
[22]
Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: a semantic web rule language combining OWL and RuleML. W3C Member Submission 21 May 2004 (2004). https://www.w3.org/Submission/SWRL
[23]
Huysmans J, Baesens B, and Vanthienen J Tjoa AM and Trujillo J ITER: an algorithm for predictive regression rule extraction Data Warehousing and Knowledge Discovery 2006 Heidelberg Springer 270-279
[24]
Huysmans J, Dejaeger K, Mues C, Vanthienen J, and Baesens B An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models Decis. Support Syst. 2011 51 1 141-154
[25]
Lachiche N Sammut C and Webb GI Propositionalization Encyclopedia of Machine Learning 2010 Boston Springer 812-817
[26]
Lamy J Owlready: ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies Artif. Intell. Med. 2017 80 11-28
[27]
Lipton ZC The mythos of model interpretability Queue 2018 16 3 31-57
[28]
Maamar Z and Moulin B Kandzia P and Klusch M Interoperability of distributed and heterogeneous systems based on software agent-oriented frameworks Cooperative Information Agents 1997 Heidelberg Springer 248-259
[29]
Manola, F., Miller, E., McBride, B.: Resource description framework (RDF) primer. W3C Recommendation 10 February 2004 (2004). https://www.w3.org/TR/rdf-primer
[30]
Motik B, Shearer RDC, and Horrocks I Hypertableau reasoning for description logics J. Artif. Intell. Res. 2009 36 165-228
[31]
Murphy, P.M., Pazzani, M.J.: ID2-of-3: constructive induction of M-of-N concepts for discriminators in decision trees. In: Machine Learning Proceedings 1991, pp. 183–187. Elsevier (1991). 8th International Conference (ML 1991), Evanston, IL, USA
[32]
Quinlan JR Simplifying decision trees Int. J. Man Mach. Stud. 1987 27 3 221-234
[33]
Quinlan, J.R.: C4.5: Programming for Machine Learning. Morgan Kauffmann (1993). https://dl.acm.org/doi/10.5555/152181
[34]
Rudin C Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead Nat. Mach. Intell. 2019 1 5 206-215
[35]
Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: On the design of PSyKE: a platform for symbolic knowledge extraction. In: Calegari, R., Ciatto, G., Denti, E., Omicini, A., Sartor, G. (eds.) WOA 2021–22nd Workshop “From Objects to Agents”. CEUR Workshop Proceedings, vol. 2963, pp. 29–48. Sun SITE Central Europe, RWTH Aachen University (2021). http://ceur-ws.org/Vol-2963/paper14.pdf. 22nd Workshop “From Objects to Agents” (WOA 2021), Bologna, Italy, 1–3 September Proceedings (2021)
[36]
Sabbatini F, Ciatto G, and Omicini A Calvaresi D, Najjar A, Winikoff M, and Främling K GridEx: an algorithm for knowledge extraction from black-box regressors Explainable and Transparent AI and Multi-Agent Systems 2021 Cham Springer 18-38
[37]
Saleem, A., Honeth, N., Nordström, L.: A case study of multi-agent interoperability in IEC 61850 environments. In: IEEE PES Conference on Innovative Smart Grid Technologies, ISGT Europe 2010, 11–13 October 2010, Gothenburg, Sweden, pp. 1–8. IEEE (2010).
[38]
Setiono R, Baesens B, and Mues C Rule extraction from minimal neural networks for credit card screening Int. J. Neural Syst. 2011 21 04 265-276
[39]
Shearer, R.D.C., Motik, B., Horrocks, I.: HermiT: A highly-efficient OWL reasoner. In: Dolbear, C., Ruttenberg, A., Sattler, U. (eds.) Proceedings of the Fifth OWLED Workshop on OWL: Experiences and Directions, Collocated with the 7th International Semantic Web Conference (ISWC-2008), Karlsruhe, Germany, 26–27 October 2008. CEUR Workshop Proceedings, vol. 432. CEUR-WS.org (2008). http://ceur-ws.org/Vol-432/owled2008eu_submission_12.pdf
[40]
Siorpaes K and Hepp M Meersman R, Tari Z, and Herrero P OntoGame: towards overcoming the incentive bottleneck in ontology building On the Move to Meaningful Internet Systems 2007: OTM 2007 Workshops 2007 Heidelberg Springer 1222-1232
[41]
Sirin, E., Parsia, B.: Pellet: an OWL DL reasoner. In: Haarslev, V., Möller, R. (eds.) Proceedings of the 2004 International Workshop on Description Logics (DL2004), Whistler, British Columbia, Canada, 6–8 June 2004. CEUR Workshop Proceedings, vol. 104. CEUR-WS.org (2004). http://ceur-ws.org/Vol-104/30Sirin-Parsia.pdf
[42]
Sirin E, Parsia B, Cuenca Grau B, Kalyanpur A, and Katz Y Pellet: a practical OWL-DL reasoner J. Web Semant. 2007 5 2 51-53
[43]
Steiner, M.T.A., Steiner Neto, P.J., Soma, N.Y., Shimizu, T., Nievola, J.C.: Using neural network rule extraction for credit-risk evaluation. Int. J. Comput. Sci. Netw. Secur. 6(5A), 6–16 (2006). http://paper.ijcsns.org/07_book/200605/200605A02.pdf

Cited By

View all
  • (2023)AJAN: An Engineering Framework for Semantic Web-Enabled Agents and Multi-Agent SystemsAdvances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection10.1007/978-3-031-37616-0_2(15-27)Online publication date: 12-Jul-2023

Index Terms

  1. Semantic Web-Based Interoperability for Intelligent Agents with PSyKE
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Guide Proceedings
          Explainable and Transparent AI and Multi-Agent Systems: 4th International Workshop, EXTRAAMAS 2022, Virtual Event, May 9–10, 2022, Revised Selected Papers
          May 2022
          241 pages
          ISBN:978-3-031-15564-2
          DOI:10.1007/978-3-031-15565-9
          • Editors:
          • Davide Calvaresi,
          • Amro Najjar,
          • Michael Winikoff,
          • Kary Främling

          Publisher

          Springer-Verlag

          Berlin, Heidelberg

          Publication History

          Published: 09 May 2022

          Author Tags

          1. Explainable AI
          2. Knowledge extraction
          3. Semantic Web
          4. Intelligent agents
          5. PSyKE

          Qualifiers

          • Article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 06 Oct 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2023)AJAN: An Engineering Framework for Semantic Web-Enabled Agents and Multi-Agent SystemsAdvances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection10.1007/978-3-031-37616-0_2(15-27)Online publication date: 12-Jul-2023

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media