Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-15740-0_4guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

OLAP and NoSQL: Happily Ever After

Published: 05 September 2022 Publication History

Abstract

NoSQL databases are preferred to relational ones for storing heterogeneous data with variable schema and structure. However, their schemaless nature adds complexity to analytical applications, in which a single OLAP analysis often involves large sets of data with different schemas. In this tutorial we describe the main approaches to enable OLAP on NoSQL data. We start from schema-on-read approaches, where data are left unchanged in their structure until they are accessed by the user, so they are put into multidimensional form at query time. Specifically, we show how this enables a form of approximated OLAP that embraces the inherent variety of schemaless data. Then we move to schema-on-write approaches, where a fixed multidimensional structure is forced onto data, which are loaded into a data warehouse to be then queried. In particular, we introduce multi-model data warehouses as a way to store data in multidimensional form and, at the same time, let each piece of data be natively represented through the most appropriate NoSQL model.

References

[1]
Abelló A et al. Fusion cubes: towards self-service business intelligence IJDWM 2013 9 2 66-88
[2]
Beheshti S-M-R, Benatallah B, Motahari-Nezhad HR, and Allahbakhsh M Wang XS, Cruz I, Delis A, and Huang G A framework and a language for on-line analytical processing on graphs Web Information Systems Engineering - WISE 2012 2012 Heidelberg Springer 213-227
[3]
Bex GJ, Gelade W, Neven F, and Vansummeren S Learning deterministic regular expressions for the inference of schemas from XML data ACM TWEB 2010 4 4 14
[4]
Bimonte, S., Gallinucci, E., Marcel, P., Rizzi, S.: Data variety, come as you are in multi-model data warehouses. Inf. Syst. 104, 101734 (2022)
[5]
Bohannon, P., Elnahrawy, E., Fan, W., Flaster, M.: Putting context into schema matching. In: Proceedings of VLDB, pp. 307–318 (2006)
[6]
Boussahoua, M., Boussaid, O., Bentayeb, F.: Logical schema for data warehouse on column-oriented NoSQL databases. In: Proceedings of DEXA, Lyon, France, pp. 247–256 (2017)
[7]
Castelltort, A., Laurent, A.: NoSQL graph-based OLAP analysis. In: Proceedings of KDIR, Rome, Italy, pp. 217–224 (2014)
[8]
Challal, Z., Bala, W., Mokeddem, H., Boukhalfa, K., Boussaid, O., Benkhelifa, E.: Document-oriented versus column-oriented data storage for social graph data warehouse. In: Proceedings of SNAMS, Granada, Spain, pp. 242–247 (2019)
[9]
Chen C, Yan X, Zhu F, Han J, and Yu PS Graph OLAP: a multi-dimensional framework for graph data analysis Knowl. Inf. Syst. 2009 21 1 41-63
[10]
Chevalier, M., Malki, M.E., Kopliku, A., Teste, O., Tournier, R.: Document-oriented models for data warehouses - NoSQL document-oriented for data warehouses. In: Proceedings of ICEIS, Rome, Italy, pp. 142–149 (2016)
[11]
Chouder ML, Rizzi S, and Chalal R EXODuS: exploratory OLAP over document stores Inf. Syst. 2019 79 44-57
[12]
Cuzzocrea, A., Bellatreche, L., Song, I.Y.: Data warehousing and OLAP over big data: current challenges and future research directions. In: Proceedings of DOLAP, pp. 67–70 (2013)
[13]
Dehdouh, K.: Building OLAP cubes from columnar NoSQL data warehouses. In: Proceedings of MEDI, Almería, Spain, pp. 166–179 (2016)
[14]
Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: iMAP: discovering complex semantic matches between database schemas. In: Proceedings of ICMD, pp. 383–394 (2004)
[15]
Gallinucci E, Golfarelli M, and Rizzi S Schema profiling of document-oriented databases Inf. Syst. 2018 75 13-25
[16]
Gallinucci E, Golfarelli M, and Rizzi S Approximate OLAP of document-oriented databases: a variety-aware approach Inf. Syst. 2019 85 114-130
[17]
Gartner Research: Market share: Database management systems, worldwide, 2019, April 2020. https://www.gartner.com/en/documents/3984279
[18]
Golfarelli M and Rizzi S Data Warehouse Design: Modern Principles and Methodologies 2009 New York McGraw-Hill Inc.
[19]
Gómez LI, Kuijpers B, and Vaisman AA Online analytical processsing on graph data Intell. Data Anal. 2020 24 3 515-541
[20]
Holubová, I., Contos, P., Svoboda, M.: Multi-model data modeling and representation: state of the art and research challenges. In: Proceedings of IDEAS, Montreal, QC, Canada, pp. 242–251 (2021)
[21]
Holubová, I., Svoboda, M., Lu, J.: Unified management of multi-model data - (vision paper). In: Proceedings of ER, Salvador, Brazil, pp. 439–447 (2019)
[22]
Izquierdo, J.L.C., Cabot, J.: Discovering implicit schemas in JSON data. In: Proceedings of ICWE, pp. 68–83 (2013)
[23]
Ouaret Z, Chalal R, and Boussaid O An overview of XML warehouse design approaches and techniques IJICoT 2013 2 2/3 140-170
[24]
Ruiz, D.S., Morales, S.F., Molina, J.G.: Inferring versioned schemas from NoSQL databases and its applications. In: Proceedings of ER, pp. 467–480 (2015)
[25]
Scabora, L.C., Brito, J.J., Ciferri, R.R., de Aguiar Ciferri, C.D.: Physical data warehouse design on NoSQL databases - OLAP query processing over HBase. In: Proceedings of ICEIS, Rome, Italy, pp. 111–118 (2016)
[26]
Sellami, A., Nabli, A., Gargouri, F.: Transformation of data warehouse schema to NoSQL graph data base. In: Proceedings of ISDA, Vellore, India, pp. 410–420 (2018)
[27]
Sellami, A., Nabli, A., Gargouri, F.: Graph NoSQL data warehouse creation. In: Proceedings of iiWAS, Chiang Mai, Thailand, pp. 34–38 (2020)
[28]
Yangui, R., Nabli, A., Gargouri, F.: Automatic transformation of data warehouse schema to NoSQL data base: comparative study. In: Proceedings of KES, York, UK, pp. 255–264 (2016)

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Advances in Databases and Information Systems: 26th European Conference, ADBIS 2022, Turin, Italy, September 5–8, 2022, Proceedings
Sep 2022
418 pages
ISBN:978-3-031-15739-4
DOI:10.1007/978-3-031-15740-0

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 05 September 2022

Author Tags

  1. NoSQL databases
  2. OLAP
  3. Multi-model databases

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media