Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-16081-3_2guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

An Approximation Algorithm for the Clustered Path Travelling Salesman Problem

Published: 13 August 2022 Publication History

Abstract

In this paper, we consider the clustered path travelling salesman problem. In this problem, we are given a complete graph G=(V,E) with edge weight satisfying the triangle inequality. In addition, the vertex set V is partitioned into clusters V1,,Vk. The objective of the problem is to find a minimum Hamiltonian path in G, and in the path all vertices of each cluster are visited consecutively. We provide a polynomial-time approximation algorithm for the problem.

References

[1]
An H-C, Kleinberg R, and Shmoys DB Improving Christofide’ algorithm for the s-t path TSP J. ACM 2015 62 5 1-28
[2]
Anily S, Bramel J, and Hertz A A 5/3-approximation algorithm for the clustered traveling salesman tour and path problems Oper. Res. Lett. 1999 24 29-35
[3]
Arkin EM, Hassin R, and Klein L Restricted delivery problems on a network Networks 1994 29 205-216
[4]
Bland RG and Shallcross DF Large travelling salesman problems arising from experiments in X-ray crystallography: a preliminary report on computation Oper. Res. Lett. 1989 8 3 125-128
[5]
Chisman JA The clustered traveling salesman problem Comput. Oper. Res. 1975 2 115-119
[6]
Christofides, N.: Worst-case analysis of a new heuristic for the Travelling Salesman Problem. Technical report 388, Graduate School of Industrial Administration, Carnegie Mellon University (1976)
[7]
Diestel R Graph Theory 2017 New York Springer
[8]
Edmonds J Paths, trees and flowers Can. J. Math. 1965 17 449-467
[9]
Gendreau M, Hertz A, and Laporte G The traveling salesman problem with backhauls Comput. Oper. Res. 1996 23 501-508
[10]
Grinman, A.: The Hungarian algorithm for weighted bipartite graphs. Seminar in Theoretical Computer Science (2015)
[11]
Grötschel M and Holland O Solution of large-scale symmetric traveling salesman problems Math. Program. 1991 51 141-202
[12]
Gottschalk C and Vygen J Better s-t-tours by Gao trees Math. Program. 2018 172 191-207
[13]
Guttmann-Beck N, Hassin R, Khuller S, and Raghavachari B Approximation algorithms with bounded performance guarantees for the clustered traveling salesman problem Algorithmica 2000 28 422-437
[14]
Hong YM, Lai HJ, and Liu QH Supereulerian digraphs Discrete Math. 2014 330 87-95
[15]
Hoogeveen JA Analysis of Christofides’ heuristic: some paths are more difficult than cycles Oper. Res. Lett. 1991 10 291-295
[16]
Jongens K and Volgenant T The symmetric clustered traveling salesman problem Eur. J. Oper. Res. 1985 19 68-75
[17]
Kawasaki M and Takazawa T Improving approximation ratios for the clustered travelling salesman problem J. Oper. Res. Soc. Jpn. 2020 63 2 60-70
[18]
Plante RD, Lowe TJ, and Chandrasekaran R The product matrix travelling salesman problem: an application and solution heuristics Oper. Res. 1987 35 772-783
[19]
Sebő, A., van Zuylen, A.: The salesman’s improved paths: a 3/2+1/34 approximation. In: Proceedings of 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 118–127 (2016)
[20]
Traub V and Vygen J Approaching 3/2 for the s-t path TSP J. ACM 2019 66 2 1-17
[21]
Yao A An O(EloglogV) algorithm for finding minimum spanning trees Inf. Process. Lett. 1975 4 21-23
[22]
Zenklusen, R.: A 1.5-approximation for path TSP. In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1539–1549 (2019)

Index Terms

  1. An Approximation Algorithm for the Clustered Path Travelling Salesman Problem
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        Algorithmic Aspects in Information and Management: 16th International Conference, AAIM 2022, Guangzhou, China, August 13–14, 2022, Proceedings
        Aug 2022
        481 pages
        ISBN:978-3-031-16080-6
        DOI:10.1007/978-3-031-16081-3
        • Editors:
        • Qiufen Ni,
        • Weili Wu

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 13 August 2022

        Author Tags

        1. Travelling salesman problem
        2. Stacker crane problem
        3. Path
        4. Cluster

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 10 Nov 2024

        Other Metrics

        Citations

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media