Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-35017-7_3guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Mental Face Image Retrieval Based on a Closed-Loop Brain-Computer Interface

Published: 23 July 2023 Publication History
  • Get Citation Alerts
  • Abstract

    Retrieval of mental images from measured brain activity may facilitate communication, especially when verbal or muscular communication is impossible or inefficient. The existing work focuses mostly on retrieving the observed visual stimulus while our interest is on retrieving the imagined mental image. We present a closed-loop BCI framework to retrieve mental images of human faces. We utilize EEG signals as binary feedback to determine the relevance of an image to the target mental image. We employ the feedback to traverse the latent space of a generative model to propose new images closer to the actual target image. We evaluate the proposed framework on 13 volunteers. Unlike previous studies, we do not restrict the possible attributes of the resulting images to predefined semantic classes. Subjective and objective tests validate the ability of our model to retrieve face images similar to the actual target mental images.

    References

    [1]
    Pearson J, Naselaris T, Holmes EA, and Kosslyn SM Mental imagery: functional mechanisms and clinical applications Trends Cogn. Sci. 2015 19 10 590-602
    [2]
    Ganis G Ramachandran V Mental imagery Encyclopedia of Human Behavior 2012 2 San Diego Academic Press 601-607
    [3]
    Pearson J The human imagination: the cognitive neuroscience of visual mental imagery Nat. Rev. Neurosci. 2019 20 10 624-634
    [4]
    Du, C., Du, C., He, H.: Sharing deep generative representation for perceived image reconstruction from human brain activity. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 1049–1056. IEEE (2017)
    [5]
    Zhang, X., Chen, X., Dong, M., Liu, H., Ge, C., Yao, L.: Multi-task generative adversarial learning on geometrical shape reconstruction from EEG brain signals. arXiv preprint arXiv:1907.13351 (2019)
    [6]
    Nishimoto S, Vu AT, Naselaris T, Benjamini Y, Yu B, and Gallant JL Reconstructing visual experiences from brain activity evoked by natural movies Curr. Biol. 2011 21 19 1641-1646
    [7]
    Shen, G., Horikawa, T., Majima, K., Kamitani, Y.: Deep image reconstruction from human brain activity. PLoS Comput. Biol. 15(1), e1006633 (2019)
    [8]
    Gaziv, G., et al.: Self-supervised natural image reconstruction and large-scale semantic classification from brain activity. Neuroimage 254, 119121 (2022)
    [9]
    Naselaris T, Prenger RJ, Kay KN, Oliver M, and Gallant JL Bayesian reconstruction of natural images from human brain activity Neuron 2009 63 6 902-915
    [10]
    Kavasidis, I., Palazzo, S., Spampinato, C., Giordano, D., Shah, M.: Brain2image: converting brain signals into images. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1809–1817 (2017)
    [11]
    Fang Y and Geman D Kanade T, Jain A, and Ratha NK Experiments in mental face retrieval Audio- and Video-Based Biometric Person Authentication 2005 Heidelberg Springer 637-646
    [12]
    Ferecatu M and Geman D A statistical framework for image category search from a mental picture IEEE Trans. Pattern Anal. Mach. Intell. 2008 31 6 1087-1101
    [13]
    Pohlmeyer, E.A., Wang, J., Jangraw, D.C., Lou, B., Chang, S.F., Sajda, P.: Closing the loop in cortically-coupled computer vision: a brain-computer interface for searching image databases. J. Neural Eng. 8(3), 036025 (2011)
    [14]
    Ušćumlić, M., Chavarriaga, R., Millán, J.D.R.: An iterative framework for EEG-based image search: robust retrieval with weak classifiers. PloS One 8(8), e72018 (2013)
    [15]
    Ukkonen, A., Joona, P., Ruotsalo, T.: Generating images instead of retrieving them: Relevance feedback on generative adversarial networks. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1329–1338 (2020)
    [16]
    Kangassalo L, Spapé M, and Ruotsalo T Neuroadaptive modelling for generating images matching perceptual categories Sci. Rep. 2020 10 1 1-10
    [17]
    Spape, M., Davis, K., Kangassalo, L., Ravaja, N., Sovijarvi-Spape, Z., Ruotsalo, T.: Brain-computer interface for generating personally attractive images. IEEE Trans. Affect. Comput. 1(1) (2021)
    [18]
    Luck, S.J.: Event-related potentials (2012)
    [19]
    Rugg MD and Curran T Event-related potentials and recognition memory Trends Cogn. Sci. 2007 11 6 251-257
    [20]
    Smith ME Neurophysiological manifestations of recollective experience during recognition memory judgments J. Cogn. Neurosci. 1993 5 1 1-13
    [21]
    Johnson JS and Olshausen BA The earliest EEG signatures of object recognition in a cued-target task are postsensory J. Vis. 2005 5 4 2-2
    [22]
    Bruce V and Young A Understanding face recognition Br. J. Psychol. 1986 77 3 305-327
    [23]
    Gosling A and Eimer M An event-related brain potential study of explicit face recognition Neuropsychologia 2011 49 9 2736-2745
    [24]
    Touryan J, Gibson L, Horne JH, and Weber P Real-time measurement of face recognition in rapid serial visual presentation Front. Psychol. 2011 2 42
    [25]
    Caharel S, Poiroux S, Bernard C, Thibaut F, Lalonde R, and Rebai M ERPS associated with familiarity and degree of familiarity during face recognition Int. J. Neurosci. 2002 112 12 1499-1512
    [26]
    Schweinberger SR, Pfütze EM, and Sommer W Repetition priming and associative priming of face recognition: evidence from event-related potentials J. Exp. Psychol. Learn. Mem. Cogn. 1995 21 3 722
    [27]
    Schweinberger SR, Huddy V, and Burton AM N250r: a face-selective brain response to stimulus repetitions NeuroReport 2004 15 9 1501-1505
    [28]
    Schweinberger SR and Burton AM Covert recognition and the neural system for face processing Cortex 2003 39 1 9-30
    [29]
    Bentin S and Deouell LY Structural encoding and identification in face processing: ERP evidence for separate mechanisms Cogn. Neuropsychol. 2000 17 1–3 35-55
    [30]
    Eimer M The face-specific N170 component reflects late stages in the structural encoding of faces NeuroReport 2000 11 10 2319-2324
    [31]
    Courchesne E, Hillyard SA, and Galambos R Stimulus novelty, task relevance and the visual evoked potential in man Electroencephalogr. Clin. Neurophysiol. 1975 39 2 131-143
    [32]
    Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)
    [33]
    Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
    [34]
    Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)
    [35]
    Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
    [36]
    Tirupattur, P., Rawat, Y.S., Spampinato, C., Shah, M.: ThoughtViz: visualizing human thoughts using generative adversarial network. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 950–958 (2018)
    [37]
    Khare S, Choubey RN, Amar L, and Udutalapalli V NeuroVision: perceived image regeneration using cProGAN Neural Comput. Appl. 2022 34 8 5979-5991
    [38]
    Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)
    [39]
    Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)
    [40]
    Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)
    [41]
    Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGNet: a compact convolutional neural network for eeg-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018)
    [42]
    Wang Z, Bovik AC, Sheikh HR, and Simoncelli EP Image quality assessment: from error visibility to structural similarity IEEE Trans. Image Process. 2004 13 4 600-612
    [43]
    Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)
    [44]
    Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
    [45]
    Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67–74. IEEE (2018)
    [46]
    Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)
    [47]
    Xia, W., Zhang, Y., Yang, Y., Xue, J.H., Zhou, B., Yang, M.H.: GAN inversion: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2022)
    [48]
    Chen X, Wang Y, Nakanishi M, Gao X, Jung TP, and Gao S High-speed spelling with a noninvasive brain-computer interface Proc. Natl. Acad. Sci. 2015 112 44 E6058-E6067
    [49]
    Furdea A et al. An auditory oddball (P300) spelling system for brain-computer interfaces Psychophysiology 2009 46 3 617-625
    [50]
    Kübler A, Furdea A, Halder S, Hammer EM, Nijboer F, and Kotchoubey B A brain-computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients Ann. N. Y. Acad. Sci. 2009 1157 1 90-100
    [51]
    Song, D., et al.: Predicting human intention in visual observations of hand/object interactions. In: 2013 IEEE International Conference on Robotics and Automation, pp. 1608–1615. IEEE (2013)
    [52]
    Butepage, J., Black, M.J., Kragic, D., Kjellstrom, H.: Deep representation learning for human motion prediction and classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6158–6166 (2017)
    [53]
    Bütepage, J., Kjellström, H., Kragic, D.: Anticipating many futures: online human motion prediction and generation for human-robot interaction. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4563–4570. IEEE (2018)

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    Augmented Cognition: 17th International Conference, AC 2023, Held as Part of the 25th HCI International Conference, HCII 2023, Copenhagen, Denmark, July 23–28, 2023, Proceedings
    Jul 2023
    501 pages
    ISBN:978-3-031-35016-0
    DOI:10.1007/978-3-031-35017-7

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 23 July 2023

    Author Tags

    1. EEG
    2. Brain-Computer Interface
    3. Mental Image Retrieval
    4. Generative Models

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 11 Aug 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media