Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-43380-1_2guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Reconstructing Graphs from Connected Triples

Published: 23 September 2023 Publication History

Abstract

We introduce a new model of indeterminacy in graphs: instead of specifying all the edges of the graph, the input contains all triples of vertices that form a connected subgraph. In general, different (labelled) graphs may have the same set of connected triples, making unique reconstruction of the original graph from the triples impossible. We identify some families of graphs (including triangle-free graphs) for which all graphs have a different set of connected triples. We also give algorithms that reconstruct a graph from a set of triples, and for testing if this reconstruction is unique. Finally, we study a possible extension of the model in which the subsets of size k that induce a connected graph are given for larger (fixed) values of k.

References

[1]
Ahmed M and Wenk C Epstein L and Ferragina P Constructing street networks from GPS trajectories Algorithms – ESA 2012 2012 Heidelberg Springer 60-71
[2]
Aspvall B, Plass MF, and Tarjan RE A linear-time algorithm for testing the truth of certain quantified Boolean formulas Inf. Process. Lett. 1979 8 3 121-123
[3]
Bastide, P., et al.: Reconstructing graphs from connected triples (2023)
[4]
Bollobás B Random graphs Modern Graph Theory 1998 New York Springer 215-252
[5]
Bondy JA and Hemminger RL Graph reconstruction - a survey J. Graph Theory 1977 1 3 227-268
[6]
Bowler A, Brown P, and Fenner T Families of pairs of graphs with a large number of common cards J. Graph Theory 2010 63 2 146-163
[7]
Brandes U and Cornelsen S Phylogenetic graph models beyond trees Discrete Appl. Math. 2009 157 10 2361-2369
[8]
Cameron PJ and Martins C A theorem on reconstruction of random graphs Comb. Probab. Comput. 1993 2 1 1-9
[9]
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, pp. 197–200. MIT press (2022)
[10]
Dey, T.K., Wang, J., Wang, Y.: Graph reconstruction by discrete Morse theory. In: Proceedings of the 34th International Symposium on Computational Geometry. Leibniz International Proceedings in Informatics (LIPIcs), vol. 99, pp. 31:1–31:15 (2018)
[11]
Even S, Itai A, and Shamir A On the complexity of timetable and multicommodity flow problems SIAM J. Comput. 1976 5 4 691-703
[12]
Feder T Network flow and 2-satisfiability Algorithmica 1994 11 3 291-319
[13]
Fredman ML, Komlós J, and Szemerédi E Storing a sparse table with worst case access time J. ACM 1984 31 3 538-544
[14]
Frieze A and Karonski M Introduction to Random Graphs 2015 New York Cambridge University Press
[15]
Giles WB The reconstruction of outerplanar graphs J. Comb. Theory Ser. B 1974 16 3 215-226
[16]
Groenland C, Guggiari H, and Scott A Size reconstructibility of graphs J. Graph Theory 2021 96 2 326-337
[17]
Harary F Bari RA and Harary F A survey of the reconstruction conjecture Graphs and Combinatorics 1974 Berlin Springer 18-28
[18]
Janson S, Rucinski A, and Luczak T Random Graphs 2011 Hoboken John Wiley & Sons
[19]
Kannan S, Mathieu C, and Zhou H Graph reconstruction and verification ACM Trans. Algorithms 2018 14 4 1-30
[20]
Kassiano V, Gounaris A, Papadopoulos AN, and Tsichlas K Sellis T and Oikonomou K Mining uncertain graphs: an overview Algorithmic Aspects of Cloud Computing 2017 Cham Springer 87-116
[21]
Kelly, P.J.: On Isometric Transformations. Ph.D. thesis, University of Wisconsin (1942)
[22]
Lauri J The reconstruction of maximal planar graphs J. Combi. Theory Ser. B 1981 30 2 196-214
[23]
Lauri J and Scapellato R Topics in Graph Automorphisms and Reconstruction 2016 Cambridge Cambridge University Press
[24]
Mordeson JN and Peng CS Operations on fuzzy graphs Inf. Sci. 1994 79 3 159-170
[25]
Mossel E and Ross N Shotgun assembly of labeled graphs IEEE Trans. Netw. Sci. Eng. 2017 6 2 145-157
[26]
Myrvold W The degree sequence is reconstructible from cards Discrete Math. 1992 102 2 187-196
[27]
Rosenfeld, A.: Fuzzy graphs. In: Zadeh, L.A., Fu, K.S., Tanaka, K., Shimura, M. (eds.) Fuzzy Sets and their Applications to Cognitive and Decision Processes, pp. 77–95. Elsevier (1975)
[28]
Tutte, W.: All the king’s horses. A guide to reconstruction. Graph Theory Relat. Top., 15–33 (1979)
[29]
Ulam, S.M.: A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, vol. 8. Interscience Publishers (1960)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Graph-Theoretic Concepts in Computer Science: 49th International Workshop, WG 2023, Fribourg, Switzerland, June 28–30, 2023, Revised Selected Papers
Jun 2023
490 pages
ISBN:978-3-031-43379-5
DOI:10.1007/978-3-031-43380-1
  • Editors:
  • Daniël Paulusma,
  • Bernard Ries

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 23 September 2023

Author Tags

  1. Algorithms
  2. Graph reconstruction
  3. Indeterminacy
  4. Uncertainty
  5. Connected Subgraphs

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media