Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-43619-2_19guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Hamiltonian Cycle Reconfiguration with Answer Set Programming

Published: 24 September 2023 Publication History

Abstract

The Hamiltonian cycle reconfiguration problem is defined as determining, for a given Hamiltonian cycle problem and two among its feasible solutions, whether one is reachable from another via a sequence of feasible solutions subject to certain transition constraints. We develop an approach to solving the Hamiltonian cycle reconfiguration problem based on Answer Set Programming (ASP). Our approach relies on a high-level ASP encoding and delegates both the grounding and solving tasks to an ASP-based solver. To show the effectiveness of our approach, we conduct experiments on the benchmark set of Flinders Hamiltonian Cycle Project.

References

[1]
Audemard G, Boussemart F, Lecoutre C, Piette C, and Roussel O XCSP3 and its ecosystem Constraints 2020 25 1–2 47-69
[2]
Baral C Knowledge Representation, Reasoning and Declarative Problem Solving 2003 Cambridge Cambridge University Press
[3]
Bomanson J, Gebser M, Janhunen T, Kaufmann B, and Schaub T Calimeri F, Ianni G, and Truszczynski M Answer set programming modulo acyclicity Logic Programming and Nonmonotonic Reasoning 2015 Cham Springer 143-150
[4]
Bonsma PS and Cereceda L Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances Theoret. Comput. Sci. 2009 410 50 5215-5226
[5]
Brewster RC, McGuinness S, Moore BR, and Noel JA A dichotomy theorem for circular colouring reconfiguration Theoret. Comput. Sci. 2016 639 1-13
[6]
Cereceda L, van den Heuvel J, and Johnson M Finding paths between 3-colorings J. Graph Theory 2011 67 1 69-82
[7]
Gebser, M., et al.: Potassco User Guide, 2nd edn. University of Potsdam (2015). http://potassco.org
[8]
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference and Symposium of Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press (1988)
[9]
Gopalan P, Kolaitis PG, Maneva EN, and Papadimitriou CH The connectivity of Boolean satisfiability: computational and structural dichotomies SIAM J. Comput. 2009 38 6 2330-2355
[10]
Haddadan A et al. The complexity of dominating set reconfiguration Theoret. Comput. Sci. 2016 651 37-49
[11]
Haythorpe M FHCP challenge set: the first set of structurally difficult instances of the Hamiltonian cycle problem Bulletin ICA 2018 83 98-107
[12]
Heule MJH Li C-M and Manyà F Chinese remainder encoding for Hamiltonian cycles Theory and Applications of Satisfiability Testing – SAT 2021 2021 Cham Springer 216-224
[13]
van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S., Wildon, M. (eds.) Surveys in Combinatorics 2013, London Mathematical Society Lecture Note Series, vol. 409, pp. 127–160. Cambridge University Press (2013)
[14]
Inoue T et al. Distribution loss minimization with guaranteed error bound IEEE Trans. Smart Grid 2014 5 1 102-111
[15]
Ito T et al. On the complexity of reconfiguration problems Theoret. Comput. Sci. 2011 412 12–14 1054-1065
[16]
Ito T, Kaminski M, and Demaine ED Reconfiguration of list edge-colorings in a graph Discret. Appl. Math. 2012 160 15 2199-2207
[17]
Ito T, Kamiński M, Ono H, Suzuki A, Uehara R, and Yamanaka K Gopal TV, Agrawal M, Li A, and Cooper SB On the parameterized complexity for token jumping on graphs Theory and Applications of Models of Computation 2014 Cham Springer 341-351
[18]
Ito T, Ono H, and Otachi Y Jain R, Jain S, and Stephan F Reconfiguration of cliques in a graph Theory and Applications of Models of Computation 2015 Cham Springer 212-223
[19]
Kaminski M, Medvedev P, and Milanic M Complexity of independent set reconfigurability problems Theoret. Comput. Sci. 2012 439 9-15
[20]
Kaminski R, Romero J, Schaub T, and Wanko P How to build your own asp-based system?! Theory Pract. Logic Program. 2023 23 1 299-361
[21]
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)
[22]
Lifschitz V Answer Set Programming 2019 Heidelberg Springer
[23]
Lin S and Kernighan BW An effective heuristic algorithm for the traveling-salesman problem Oper. Res. 1973 21 2 498-516
[24]
Liu, L., Truszczynski, M.: Encoding selection for solving Hamiltonian cycle problems with ASP. In: Proceedings of the 35th International Conference on Logic Programming (ICLP 2019), Technical Communications. EPTCS, vol. 306, pp. 302–308 (2019)
[25]
Mouawad AE, Nishimura N, Pathak V, and Raman V Shortest reconfiguration paths in the solution space of Boolean formulas SIAM J. Discret. Math. 2017 31 3 2185-2200
[26]
Niemelä I Logic programs with stable model semantics as a constraint programming paradigm Ann. Math. Artif. Intell. 1999 25 3–4 241-273
[27]
Nishimura N Introduction to reconfiguration Algorithms 2018 11 4 52
[28]
Soh T, Le Berre D, Roussel S, Banbara M, and Tamura N Fermé E and Leite J Incremental SAT-based method with native Boolean cardinality handling for the Hamiltonian cycle problem Logics in Artificial Intelligence 2014 Cham Springer 684-693
[29]
Soh, T., Okamoto, Y., Ito, T.: Core challenge 2022: solver and graph descriptions. CoRR abs/2208.02495 (2022)
[30]
Suzuki A, Mouawad AE, and Nishimura N Reconfiguration of dominating sets J. Comb. Optim. 2016 32 4 1182-1195
[31]
Takaoka A Complexity of Hamiltonian cycle reconfiguration Algorithms 2018 11 9 140
[32]
Zhou N-F, Kjellerstrand H, and Fruhman J Constraint Solving and Planning with Picat 2015 Cham Springer

Cited By

View all
  • (2024)Combinatorial Reconfiguration with Answer Set Programming: Algorithms, Encodings, and Empirical AnalysisWALCOM: Algorithms and Computation10.1007/978-981-97-0566-5_18(242-256)Online publication date: 18-Mar-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Logics in Artificial Intelligence: 18th European Conference, JELIA 2023, Dresden, Germany, September 20–22, 2023, Proceedings
Sep 2023
833 pages
ISBN:978-3-031-43618-5
DOI:10.1007/978-3-031-43619-2
  • Editors:
  • Sarah Gaggl,
  • Maria Vanina Martinez,
  • Magdalena Ortiz

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 24 September 2023

Author Tags

  1. Answer Set Programming
  2. Hamiltonian Cycle Reconfiguration
  3. Combinatorial Reconfiguration

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Combinatorial Reconfiguration with Answer Set Programming: Algorithms, Encodings, and Empirical AnalysisWALCOM: Algorithms and Computation10.1007/978-981-97-0566-5_18(242-256)Online publication date: 18-Mar-2024

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media