User-Oriented Interest Representation on Knowledge Graph for Long-Tail Recommendation
Abstract
References
Recommendations
Unearthing Undiscovered Interests: Knowledge Enhanced Representation Aggregation for Long-Tail Recommendation
Integrated Uncertainty in Knowledge Modelling and Decision MakingAbstractGraph neural networks have achieved remarkable performance in the field of recommender systems. However, existing graph-based recommendation approaches predominantly focus on suggesting popular items, disregarding the significance of long-tail ...
Long-tail Session-based Recommendation
RecSys '20: Proceedings of the 14th ACM Conference on Recommender SystemsSession-based recommendation focuses on the prediction of user actions based on anonymous sessions and is a necessary method in the lack of user historical data. However, none of the existing session-based recommendation methods explicitly takes the ...
Relation pruning and discriminative sampling over knowledge graph for long-tail recommendation
AbstractLong-tail recommendations have gained significant attention owing to their potential economic market. However, the scarcity of interaction data for long-tail users/items and the popularity bias present challenges in capturing high-quality ...
Comments
Information & Contributors
Information
Published In
Publisher
Springer-Verlag
Berlin, Heidelberg
Publication History
Author Tags
Qualifiers
- Article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0