Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-46994-7_24guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

SISAP 2023 Indexing Challenge – Learned Metric Index

Published: 27 October 2023 Publication History

Abstract

This submission into the SISAP Indexing Challenge examines the experimental setup and performance of the Learned Metric Index, which uses an architecture of interconnected learned models to answer similarity queries. An inherent part of this design is a great deal of flexibility in the implementation, such as the choice of particular machine learning models, or their arrangement in the overall architecture of the index. Therefore, for the sake of transparency and reproducibility, this report thoroughly describes the details of the specific Learned Metric Index implementation used to tackle the challenge.

References

[1]
Antol, M., Oíha, J., Slanináková, T., Dohnal, V.: Learned metric index - proposition of learned indexing for unstructured data. Inf. Syst. 100 (2021)
[2]
Berrendorf M, Borutta F, and Kröger P Amato G, Gennaro C, Oria V, and Radovanović M k-Distance approximation for memory-efficient RkNN retrieval Similarity Search and Applications 2019 Cham Springer 57-71
[3]
Dong, Y., Indyk, P., Razenshteyn, I.P., Wagner, T.: Learning space partitions for nearest neighbor search. In: 8th International Conference on Learning Representations, ICLR, Addis Ababa, Ethiopia, 26–30 April 2020 (2020)
[4]
Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R., Kraska, T.: FITing-tree: a data-aware index structure. In: Proceedings of the International Conference on Management of Data (SIGMOD), pp. 1189–1206. ACM (2019)
[5]
Hünemörder M, Kröger P, Renz M, et al. Reyes N et al. Towards a learned index structure for approximate nearest neighbor search query processing Similarity Search and Applications 2021 Cham Springer 95-103
[6]
Johnson J, Douze M, and Jégou H Billion-scale similarity search with GPUs IEEE Trans. Big Data 2019 7 3 535-547
[7]
Lin, K.-I., Yang, C.: The Ann-tree: an index for efficient approximate nearest neighbor search. In: Proceedings Seventh International Conference on Database Systems for Advanced Applications. DASFAA 2001, pp. 174–181, April 2001
[8]
Kraska, T., et al.: SageDB: a learned database system. In: CIDR 2019, 9th Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, 13–16 January 2019, Online Proceedings (2019). www.cidrdb.org
[9]
Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned index structures. In: Proceedings of the 2018 International Conference on Management of Data. SIGMOD ’18, pp. 489–504. Association for Computing Machinery (2018)
[10]
Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: International Conference on Computer Vision Theory and Applications (VISAPP), pp. 331–340 (2009)
[11]
Olha J, Slanináková T, Gendiar M, Antol M, and Dohnal V Skopal T, Falchi F, Lokoč J, Sapino ML, Bartolini I, and Patella M Learned indexing in proteins: substituting complex distance calculations with embedding and clustering techniques Similarity Search and Applications - SISAP 2022 2022 Cham Springer 274-282
[12]
Sander J, Ester M, Kriegel HP, and Xu X Density-based clustering in spatial databases: the algorithm GDBScan and its applications Data Min. Knowl. Disc. 1998 2 2 169-194
[13]
Schubert E and Rousseeuw PJ Amato G, Gennaro C, Oria V, and Radovanović M Faster k-medoids clustering: improving the PAM, CLARA, and CLARANS algorithms Similarity Search and Applications 2019 Cham Springer 171-187
[14]
Slanináková T, Antol M, Oľha J, Kaňa V, Dohnal V, et al. Reyes N et al. Data-driven learned metric index: an unsupervised approach Similarity Search and Applications 2021 Cham Springer 81-94
[15]
Slanináková, T., Antol, M., Olíha, J., Dohnal, V., Ladra, S., Martínez-Prieto, M.A.: Reproducible experiments with learned metric index framework. Inf. Syst. 102255 (2023).
[16]
Van Der Walt, S., Colbert, S.C., Varoquaux, G.: The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2) (2011)
[17]
Zhang C, Koishida K, and Hansen JH Text-independent speaker verification based on triplet convolutional neural network embeddings IEEE/ACM Trans. Audio Speech Lang. Process. 2018 26 9 1633-1644

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Similarity Search and Applications: 16th International Conference, SISAP 2023, A Coruña, Spain, October 9–11, 2023, Proceedings
Oct 2023
324 pages
ISBN:978-3-031-46993-0
DOI:10.1007/978-3-031-46994-7

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 27 October 2023

Author Tags

  1. sisap indexing challenge
  2. learned metric index
  3. similarity search
  4. machine learning for indexing
  5. performance benchmarking

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media