Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-49011-8_35guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Using CDR Data to Understand Post-pandemic Mobility Patterns

Published: 15 December 2023 Publication History

Abstract

During the COVID-19 pandemic, the measures imposed to slow the spread of the virus had a profound impact on population dynamics around the world, producing unprecedented changes in mobility. Spatial data on human activity, including Call Detail Records (CDRs), have become a valuable source of information for understanding those changes. In this paper we study the population’s mobility after the first wave of the pandemic within Portugal, using CDR data. We identify the movements and stops of the citizens, at an antenna level, and compare the results in the first months after the lifting of most of the contingency measures with the same period of the following year, highlighting the advantages of using CDRs to analyze mobility in pandemic contexts. Results based on two mobile phone datasets showed a significant difference in mobility in the two periods.

References

[1]
de Palma A, Vosough S, and Liao F An overview of effects of COVID-19 on mobility and lifestyle: 18 months since the outbreak Transp. Res. Part A 2022 159 372-397
[2]
Marra A, Sun L, and Corman F The impact of COVID-19 pandemic on public transport usage and route choice: evidences from a long-term tracking study in urban area Transp. Policy 2022 16 258-268
[3]
Ferreira G, Alves A, Veloso M, and Bento C Identification and classification of routine locations using anonymized mobile communication data ISPRS Int. J. Geo-In 2022 11 4 228
[4]
Montero, L., Ros-Roca, X., Herranzc, R., Barcelób, J.: Fusing mobile phone data with other data sources to generate input Fusing mobile phone data with other data sources to generate input OD matrices for transport models. Transp. Res. Procedia 417–424 (2019).
[5]
Ranjan G, Zang H, Zhang Z, and Bolot J Are call detail records biased for sampling human mobility? SIGMOBILE Mob. Comput. Commun. Rev. 2012 16 3 33-44
[6]
Rodrigues, C., Veloso, M., Alves, A., Ferreira, G., Bento, C.: Generating the users geographic map using mobile phone data. In: Marreiros, G., Martins, B., Paiva, A., Ribeiro, B., Sardinha, A. (eds.) Progress in Artificial Intelligence EPIA 2022. Lecture Notes in Computer Science (2022).
[7]
Sevtsuk, A., Hudson, A., Halpern, D., Basu, R., Ng, K., Jong de, J.: The impact of COVID-19 on trips to urban amenities: examining travel behavior changes in Somerville, MA. PLoS ONE 16(9) (2021).
[8]
Sevtsuk, A., Basu, R., Halpern, D., Hudson, A., Ng, K., Jong de, J.: A tale of two Americas: socio-economic mobility gaps within and across American cities before and during the pandemic. Cities 131 (2022).
[9]
Manteu, C., Monteiro, N., Sequeira, A.: The short-term impact of the COVID-19 pandemic on Portuguese companies. 03 Occasional Papers 2020 (2020)
[10]
Shamshiripour, A., Rahimi, E., Shabanpour, R., Mohammadian, A.: How is COVID-19 reshaping activity-travel behavior? Evidence from a comprehensive survey in Chicago. Transp. Res. Interdiscip. Perspect. 7 (2020)
[11]
Grantz, K., Meredith, H., Cummings, D., Metcalf, C., Grenfell, B., Giles, J., Mehta, M., Solomon, S., Labrique, A., Kishore, N., Buckee, C., Wesolowski, A.: The use of mobile phone data to inform analysis of COVID-19 pandemic epidemiology. Nat. Commun. 11 (2020).
[12]
Oliver, N., Lepri, B., Sterly, H., Lambiotte, R., Deletaille, S., Nadai, M., Letouzé, E., Salah, A., Benjamins, R., Cattuto, C., Colizza, V., Cordes, N., Fraiberger, S., Koebe, T., Lehmann, S., Murillo, J., Pentland, A., Pham, P., Pivetta, F., Saramaki, J., Scarpino, S., Tizzoni, M., Verhulst, S., Vinck, P.: Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Sci. Adv. 6(23) (2020).
[13]
Graells-Garrido, E., Peredo, O., García, J.: Sensing urban patterns with antenna mappings: the case of Santiago, Chile. Sensors 16(7) (2016).
[14]
Kanno, T., Sekimoto, Y., Kanasugi, H., Shibasaki, R.: Real-time passenger location estimation using CDRs and train objects generated from crowdsourced timetables. In: PUbiComp/ISWC’15 Adjunct: Adjunct Proceedings of the 2015 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM Int. Symposium on Wearable Computers, pp. 1197–1205 (2015)
[15]
DGS: RELATÓRIO DE SITUAÇÃO. https://covid19.min-saude.pt/relatorio-de-situacao/. Accessed 20 Dec 2022
[16]
Instituto Nacional de Estatística: Estatísticas dos Transportes e Comunicaçães. Instituto Nacional de Estatística (2021)
[18]
Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conferences on Knowledge Discovery and Data Mining, pp. 226–231 (1996)
[19]
Barboza M, Alencar R, Cahves J, Silva M, Orrico R, and Evsukoff A Identifying human mobility patterns in the Rio de Janeiro metropolitan area using call detail records Transp. Res. Rec. 2020 2675 4 213-221
[20]
Pappalardo, L., Simini, F., Barlacchi, G., Pellungrini, R.: Scikit-mobility: a Python library for the analysis, generation and risk assessment of mobility data. Phys. Soc. (2021)
[21]
Willberg, E., Järv, O., Väisänen, T., Toivonen, T.: Escaping from cities during the COVID-19 crisis: using mobile phone data to trace mobility in Finland. ISPRS Int. J. Geo-Inf. 10(2) (2020).
[22]
Liu, P., Zhou, D., Wu N.: VDBSCAN: varied density based spatial clustering of applications with noise. In: International Conferences on Service Systems and Service Management, pp. 1–4 (2007).

Index Terms

  1. Using CDR Data to Understand Post-pandemic Mobility Patterns
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        Progress in Artificial Intelligence: 22nd EPIA Conference on Artificial Intelligence, EPIA 2023, Faial Island, Azores, September 5–8, 2023, Proceedings, Part II
        Sep 2023
        605 pages
        ISBN:978-3-031-49010-1
        DOI:10.1007/978-3-031-49011-8
        • Editors:
        • Nuno Moniz,
        • Zita Vale,
        • José Cascalho,
        • Catarina Silva,
        • Raquel Sebastião

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 15 December 2023

        Author Tags

        1. COVID-19
        2. Mobility
        3. CDR Data
        4. Trajectory analysis
        5. Clustering

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 14 Jan 2025

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media