Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-49190-0_5guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Approximating the λ-low-density Value

Published: 15 December 2023 Publication History

Abstract

The use of realistic input models has gained popularity in the theory community. Assuming a realistic input model often precludes complicated hypothetical inputs, and the analysis yields bounds that better reflect the behaviour of algorithms in practice.
One of the most popular models for polygonal curves and objects is λ-low-density. To select the most efficient algorithm for a certain input, one often needs to approximate the λ-low-density value, or density for short. In this paper, we show that given a set of n objects in R2, one can (2+ε)-approximate the density value in O(nlogn+λn/ε4) time.
Finally, we argue that some real-world trajectory data sets have small density values, warranting the recent development of specialised algorithms. This is done by computing approximate density values for 12 real-world trajectory data sets.

References

[1]
Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. J. Algorithms. 49(2), 262–283 (2003)., https://www.sciencedirect.com/science/article/pii/S0196677403000853
[2]
Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 05, 75–91 (1995)., https://www.worldscientific.com/doi/abs/10.1142/S0218195995000064
[3]
de Berg, M., Katz, M., van der Stappen, A.F., Vleugels, J.: Realistic input models for geometric algorithms. In: Proceedings of the thirteenth annual symposium on Computational geometry, pp. 294–303. SCG 1997, Association for Computing Machinery, New York, NY, USA (1997).
[4]
Buchin, K., Buchin, M., Gudmundsson, J., Popov, A., Wong, S.: Map matching queries under Fréchet distance on low-density spanners. In: European Workshop on Computational Geometry (2023)
[5]
Chen, D., Driemel, A., Guibas, L.J., Nguyen, A., Wenk, C.: Approximate map matching with respect to the Fréchet distance. In: 2011 Proceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 75–83. Proceedings, Society for Industrial and Applied Mathematics, January 2011., https://epubs.siam.org/doi/abs/10.1137/1.9781611972917.8
[6]
Driemel, A., Har-Peled, S., Wenk, C.: Approximating the Fréchet distance for realistic curves in near linear time. Discr. Comput. Geom. 48(1), 94–127 (2012).
[7]
Gudmundsson, J., Seybold, M.P., Wong, S.: Map matching queries on realistic input graphs under the Fréchet distance. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1464–1492. Society for Industrial and Applied Mathematics, January 2023.
[8]
Gudmundsson, J., Sha, Y., Wong, S.: Approximating the Packedness of polygonal curves. Comput. Geom. 108, 101920 (2023)., https://www.sciencedirect.com/science/article/pii/S0925772122000633
[9]
Har-Peled S Geometric Approximation Algorithms 2011 USA American Mathematical Society
[10]
Har-Peled, S., Zhou, T.: How Packed Is It, Really? May 2021. https://arxiv.org/abs/2105.10776v1
[11]
Schwarzkopf, O., Vleugels, J.: Range searching in low-density environments. Inf. Process. Lett. 60(3), 121–127 (1996).
[12]
van der Stappen, A.F., Overmars, M.H.: Motion planning amidst fat obstacles. In: Proceedings of the Tenth Annual Symposium on Computational Geometry, pp. 31–40. SCG 1994, Association for Computing Machinery, New York, NY, USA, June 1994.
[13]
Van Der Stappen AF The complexity of the free space for motion planning amidst fat obstacles J. Intell. Robot. Syst. 1994 11 1 21-44

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Computing and Combinatorics: 29th International Conference, COCOON 2023, Hawaii, HI, USA, December 15–17, 2023, Proceedings, Part I
Dec 2023
423 pages
ISBN:978-3-031-49189-4
DOI:10.1007/978-3-031-49190-0
  • Editors:
  • Weili Wu,
  • Guangmo Tong

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 15 December 2023

Author Tags

  1. realistic input models
  2. c-packedness
  3. low-density
  4. computational geometry

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media