Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-54204-6_19guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Secure Multiparty Sampling of a Biased Coin for Differential Privacy

Published: 01 March 2024 Publication History

Abstract

Sampling a biased coin is a key primitive in designing secure multiparty computation (MPC) for differentially private mechanisms. We explore privately sampling a biased coin from l unbiased coins and offer an unconditionally secure MPC protocol for this task that can be implemented using either 7.5l-4 (when l is even) or 7.5l-1.5 (when l is odd) multiplications in 7 rounds. This protocol assumes control over the choice of the underlying field size and is compatible with any linear secret sharing scheme with a multiplication protocol. The protocol is also secure against active adversaries when the underlying secret sharing scheme is secure. Eriguchi and colleagues proposed a protocol to generate noise for differential privacy, incorporating a sub-protocol for biased coins. Replacing their sub-protocol with ours significantly reduces communication needs as the number of multiplications needed per biased coin becomes roughly 3/8 of the original.

References

[1]
Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, vol. 9, pp. 211–407 (2014).
[2]
Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax Rates. In: IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 429–438 (2013).
[3]
Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006).
[4]
Eriguchi, R., Ichikawa, A., Kunihiro, N., Nuida, K.: Efficient noise generation to achieve differential privacy with applications to secure multiparty computation. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12674, pp. 271–290. Springer, Heidelberg (2021).
[5]
Clement, C., Kamath, G., Steinke, T.: The discrete gaussian for differential privacy. J. Priv. Confidentiality 12 (2022).
[7]
Schoenmakers, B., Tuyls, P.: Efficient binary conversion for paillier encrypted values. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537. Springer, Heidelberg (2006).
[8]
Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006).
[9]
Shamir A How to share a secret Commun. ACM 1979 22 612-613
[10]
Ben-Or M., Goldwasser S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, New York (1988).
[11]
Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Berlin, Heidelberg (2003).
[12]
Reistad, T.I., Toft, T.: Secret sharing comparison by transformation and rotation. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 169–180. Springer, Heidelberg (2009).
[13]
Reistad, T.I.: Multiparty comparison-an improved multiparty protocol for comparison of secret-shared values. In: SCITEPRESS 2009, vol. 1, pp. 325–330 (2009)
[14]
Reistad, T.I., Toft, T.: Linear, constant-rounds bit-decomposition. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 245–257. Springer, Heidelberg (2010).
[15]
Toft, T.: Constant-rounds, almost-linear bit-decomposition of secret shared values. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 357–371. Springer, Heidelberg (2009).
[16]
Eriguchi R, Ichikawa A, Kunihiro N, and Nuida K Efficient noise generation protocols for differentially private multiparty computation IEEE Trans. Dependable Secure Comput. 2022 01 1-16

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Computer Security. ESORICS 2023 International Workshops: CyberICS, DPM, CBT, and SECPRE, The Hague, The Netherlands, September 25–29, 2023, Revised Selected Papers, Part I
Sep 2023
517 pages
ISBN:978-3-031-54203-9
DOI:10.1007/978-3-031-54204-6

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 March 2024

Author Tags

  1. Secure Multiparty Computation
  2. Differential Privacy

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media