Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-60603-8_16guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Distributed Fractional Local Ratio and Independent Set Approximation

Published: 27 May 2024 Publication History

Abstract

We consider the Maximum Weight Independent Set problem, with a focus on obtaining good approximations for graphs of small maximum degree Δ. We give deterministic local algorithms running in time poly(Δ,logn) that come close to matching the best centralized results known and improve the previous distributed approximations by a factor of about 2. More precisely, we obtain approximations below Δ+1/22, and a further improvement to 8/5+ε when Δ=3.
Technically, this is achieved by leveraging the fractional local ratio technique, for a first application in a distributed setting.

References

[1]
Alon N Goldreich O On constant time approximation of parameters of bounded degree graphs Property Testing 2010 Heidelberg Springer 234-239
[2]
Bar-Noy A, Bar-Yehuda R, Freund A, Naor J, and Schieber B A unified approach to approximating resource allocation and scheduling JACM 2001 48 5 1069-1090
[3]
Bar-Yehuda R, Bendel K, Freund A, and Rawitz D Local ratio: a unified framework for approximation algorithms in memoriam: Shimon Even 1935–2004 ACM Comput. Surv. 2004 36 4 422-463
[4]
Bar-Yehuda, R., Censor-Hillel, K., Ghaffari, M., Schwartzman, G.: Distributed approximation of maximum independent set and maximum matching. In: 36th PODC, pp. 165–174 (2017)
[5]
Bar-Yehuda, R., Censor-Hillel, K., Schwartzman, G.: A distributed 2+ϵ-approximation for vertex cover in O(logΔ/ϵloglogΔ) rounds. JACM 64(3), 23:1–23:11 (2017)
[6]
Bar-Yehuda R and Even S A local-ratio theorem for approximating the weighted vertex cover problem Ann. Discret. Math. 1985 25 27-46
[7]
Bar-Yehuda R, Halldórsson MM, Naor J, Shachnai H, and Shapira I Scheduling split intervals SIAM J. Comput. 2006 36 1 1-15
[8]
Bar-Yehuda R and Rawitz D Using fractional primal-dual to schedule split intervals with demands Discret. Optim. 2006 3 4 275-287
[9]
Barenboim, L.: Deterministic (Δ + 1)-coloring in sublinear (in Δ) time in static, dynamic, and faulty networks. JACM 63(5), 47:1–47:22 (2016)
[10]
Barenboim L, Elkin M, and Kuhn F Distributed (Δ + 1)-coloring in linear (Δ) time SIAM J. Comput. 2014 43 1 72-95
[11]
Ben-Basat R, Even G, Kawarabayashi K, and Schwartzman G Lotker Z and Patt-Shamir B A deterministic distributed 2-approximation for weighted vertex cover in O(lognlogΔ/log2logΔ) rounds Structural Information and Communication Complexity 2018 Cham Springer 226-236
[12]
Bodlaender, M.H., Halldórsson, M.M., Konrad, C., Kuhn, F.: Brief announcement: local independent set approximation. In: PODC, pp. 377–378. ACM (2016)
[13]
Boppana RB, Halldórsson MM, and Rawitz D Simple and local independent set approximation Theoret. Comput. Sci. 2020 846 27-37
[14]
Canzar S, Elbassioni KM, Klau GW, and Mestre J On tree-constrained matchings and generalizations Algorithmica 2015 71 1 98-119
[15]
Censor-Hillel, K., Khoury, S., Paz, A.: Quadratic and near-quadratic lower bounds for the CONGEST model. In: 31st DISC, pp. 10:1–10:16 (2017)
[16]
Chan SO Approximation resistance from pairwise-independent subgroups JACM 2016 63 3 27
[17]
Faour, S., Ghaffari, M., Grunau, C., Kuhn, F., Rozhon, V.: Local distributed rounding: generalized to MIS, matching, set cover, and beyond. In: 34th SODA (2023)
[18]
Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local distributed graph problems. In: 49th STOC, pp. 784–797 (2017)
[19]
Halldórsson MM Approximations of weighted independent set and hereditary subset problems Graph Algorithms Appl. 2004 2 3-18
[20]
Halperin E Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs SIAM J. Comput. 2002 31 5 1608-1623
[21]
Hermelin D and Rawitz D Optimization problems in multiple subtree graphs Disc. Appl. Math. 2011 159 7 588-594
[22]
Hochbaum DS Efficient bounds for the stable set, vertex cover and set packing problems Discret. Appl. Math. 1983 6 3 243-254
[23]
Kawarabayashi, K., Khoury, S., Schild, A., Schwartzman, G.: Improved distributed approximations for maximum independent set. In: 34th DISC, LIPIcs, vol. 179, pp. 35:1–35:16 (2020)
[24]
Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: 17th SODA, pp. 980–989 (2006)
[25]
Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: Lower and upper bounds. JACM 63(2), 17:1–17:44 (2016)
[26]
Lewin-Eytan L, Naor J, and Orda A Admission control in networks with advance reservations Algorithmica 2004 40 4 293-304
[27]
Maus, Y., Peltonen, S., Uitto, J.: Distributed symmetry breaking on power graphs via sparsification. In: 42nd PODC, pp. 157–167 (2023)
[28]
Patt-Shamir B, Rawitz D, and Scalosub G Distributed approximation of cellular coverage J. Parallel Distrib. Comput. 2012 72 3 402-408
[29]
Rawitz D Admission control with advance reservations in simple networks J. Discret. Algorithms 2007 5 3 491-500
[30]
Rawitz, D.: Local ratio. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. Methologies and Traditional Applications, 2nd edn, vol. 1, pp. 87–111. Chapman and Hall/CRC (2018)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Structural Information and Communication Complexity: 31st International Colloquium, SIROCCO 2024, Vietri sul Mare, Italy, May 27–29, 2024, Proceedings
May 2024
528 pages
ISBN:978-3-031-60602-1
DOI:10.1007/978-3-031-60603-8
  • Editor:
  • Yuval Emek

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 27 May 2024

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media