Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-66535-6_6guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Content-Based Medical Image Retrieval for Medical Radiology Images

Published: 25 July 2024 Publication History

Abstract

In this study, a CBIR system for medical radiology images of various anatomical regions and imaging modalities was designed and implemented. Three descriptor-extraction retrieval methods were evaluated: BoVW, HOG, and CNN. Optimal configuration for each method was selected empirically. We used a dataset consisting of 38, 000 2D images, originating from CHC Rijeka, Croatia. Retrieval with ImageNet-pretrained CNNs outperformed both BoVW and HOG retrieval. Re-ranking retrieved images using a different method improved results in almost all cases. Out of all methods compared, CNN retrieval (ShuffleNet combined with average pooling) with HOG re-ranking performed best. Our experiments can be recreated using the code available at https://github.com/dbarac/cbmir.

References

[1]
Akgül CB, Rubin DL, Napel S, Beaulieu CF, Greenspan H, and Acar B Content-based image retrieval in radiology: current status and future directions J. Digit. Imaging 2011 24 208-222
[2]
Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2911–2918. IEEE (2012)
[3]
Bay H, Tuytelaars T, and Van Gool L Leonardis A, Bischof H, and Pinz A SURF: speeded up robust features Computer Vision – ECCV 2006 2006 Heidelberg Springer 404-417
[4]
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)
[5]
Foncubierta-Rodríguez, A., García Seco de Herrera, A., Müller, H.: Medical image retrieval using bag of meaningful visual words: unsupervised visual vocabulary pruning with PLSA. In: Proceedings of the 1st ACM International Workshop on Multimedia Indexing and Information Retrieval for Healthcare, pp. 75–82 (2013)
[6]
Gong Y, Lazebnik S, Gordo A, and Perronnin F Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval IEEE Trans. Pattern Anal. Mach. Intell. 2012 35 12 2916-2929
[7]
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
[8]
Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)
[9]
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)
[10]
Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2130–2137. IEEE (2009)
[11]
LeCun Y, Bengio Y, and Hinton G Deep learning nature 2015 521 7553 436-444
[12]
Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Data Sets. Cambridge University Press (2020)
[13]
Li Z, Zhang X, Müller H, and Zhang S Large-scale retrieval for medical image analytics: a comprehensive review Med. Image Anal. 2018 43 66-84
[14]
Lowe DG Distinctive image features from scale-invariant keypoints Int. J. Comput. Vis. 2004 60 91-110
[15]
Manojlović T and Štajduhar I Deep semi-supervised algorithm for learning cluster-oriented representations of medical images using partially observable DICOM tags and images Diagnostics 2021 11 10 1920
[16]
Mustapha, A., Hussain, A., Samad, S.A., Zulkifley, M.A., Diyana Wan Zaki, W.M., Hamid, H.A.: Design and development of a content-based medical image retrieval system for spine vertebrae irregularity. Biomed. Eng. Online 14(1), 1–24 (2015)
[17]
Napravnik, M., Hržić, F., Tschauner, S., Štajduhar, I.: Building RadiologyNET: unsupervised annotation of a large-scale multimodal medical database. arXiv preprint arXiv:2308.08517 (2023)
[18]
Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 2, pp. 2161–2168. IEEE (2006)
[19]
Ojala T, Pietikäinen M, and Harwood D A comparative study of texture measures with classification based on featured distributions Pattern Recogn. 1996 29 1 51-59
[20]
Oliva A and Torralba A Modeling the shape of the scene: a holistic representation of the spatial envelope Int. J. Comput. Vis. 2001 42 145-175
[21]
Otero, I.R.: Anatomy of the SIFT Method. Ph.D. thesis, École normale supérieure de Cachan-ENS Cachan (2015)
[22]
Razavian AS, Sullivan J, Carlsson S, and Maki A Visual instance retrieval with deep convolutional networks ITE Trans. Media Technol. Appl. 2016 4 3 251-258
[23]
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
[24]
Singhal A et al. Modern information retrieval: a brief overview IEEE Data Eng. Bull. 2001 24 4 35-43
[25]
Sivic, Zisserman: Video Google: a text retrieval approach to object matching in videos. In: Proceedings Ninth IEEE International Conference on Computer Vision, pp. 1470–1477. IEEE (2003)
[26]
Smeulders AW, Worring M, Santini S, Gupta A, and Jain R Content-based image retrieval at the end of the early years IEEE Trans. Pattern Anal. Mach. Intell. 2000 22 12 1349-1380
[27]
Wu G, Kim M, Wang Q, Munsell BC, and Shen D Scalable high-performance image registration framework by unsupervised deep feature representations learning IEEE Trans. Biomed. Eng. 2015 63 7 1505-1516
[28]
Zhu, S., Tizhoosh, H.R.: Radon features and barcodes for medical image retrieval via SVM. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 5065–5071. IEEE (2016)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Artificial Intelligence in Medicine: 22nd International Conference, AIME 2024, Salt Lake City, UT, USA, July 9–12, 2024, Proceedings, Part II
Jul 2024
386 pages
ISBN:978-3-031-66534-9
DOI:10.1007/978-3-031-66535-6

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 25 July 2024

Author Tags

  1. Information Retrieval
  2. Re-ranking
  3. Content-Based Image Retrieval
  4. CBIR
  5. Medical Radiology Images
  6. CBMIR
  7. Feature Extraction

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media