Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-031-72943-0_26guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

V2X-Real: A Largs-Scale Dataset for Vehicle-to-Everything Cooperative Perception

Published: 29 November 2024 Publication History

Abstract

Recent advancements in Vehicle-to-Everything (V2X) technologies have enabled autonomous vehicles to share sensing information to see through occlusions, greatly boosting the perception capability. However, there are no real-world datasets to facilitate the real V2X cooperative perception research – existing datasets either only support Vehicle-to-Infrastructure cooperation or Vehicle-to-Vehicle cooperation. In this paper, we present V2X-Real, a large-scale dataset that includes a mixture of multiple vehicles and smart infrastructure to facilitate the V2X cooperative perception development with multi-modality sensing data. Our V2X-Real is collected using two connected automated vehicles and two smart infrastructure, which are all equipped with multi-modal sensors including LiDAR sensors and multi-view cameras. The whole dataset contains 33K LiDAR frames and 171K camera data with over 1.2 M annotated bounding boxes of 10 categories in very challenging urban scenarios. According to the collaboration mode and ego perspective, we derive four types of datasets for Vehicle-Centric, Infrastructure-Centric, Vehicle-to-Vehicle, and Infrastructure-to-Infrastructure cooperative perception. Comprehensive multi-class multi-agent benchmarks of SOTA cooperative perception methods are provided. The V2X-Real dataset and codebase are available at https://mobility-lab.seas.ucla.edu/v2x-real.

References

[1]
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
[2]
Chen, Q., Ma, X., Tang, S., Guo, J., Yang, Q., Fu, S.: F-cooper: Feature based cooperative perception for autonomous vehicle edge computing system using 3D point clouds. In: Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, pp. 88–100 (2019)
[3]
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Conference on Robot Learning, pp. 1–16. PMLR (2017)
[4]
Gao L, Xia X, Zheng Z, and Ma J GNSS/IMU/LiDAR fusion for vehicle localization in urban driving environments within a consensus framework Mech. Syst. Signal Process. 2023 205 110862
[5]
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)
[6]
Hao, R., et al.: RCooper: a real-world large-scale dataset for roadside cooperative perception. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22347–22357 (2024)
[7]
Hu, Y., Fang, S., Lei, Z., Zhong, Y., Chen, S.: Where2comm: communication-efficient collaborative perception via spatial confidence maps. In: Advances in Neural Information Processing Systems, vol. 35, pp. 4874–4886 (2022)
[8]
Huang Y, Du J, Yang Z, Zhou Z, Zhang L, and Chen H A survey on trajectory-prediction methods for autonomous driving IEEE Trans. Intell. Vehicles 2022 7 3 652-674
[9]
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)
[10]
Li, E., Wang, S., Li, C., Li, D., Wu, X., Hao, Q.: Sustech points: a portable 3D point cloud interactive annotation platform system. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1108–1115. IEEE (2020)
[11]
Li, Y., Zhao, S.Z., Xu, C., Tang, C., Li, C., Ding, M., Tomizuka, M., Zhan, W.: Pre-training on synthetic driving data for trajectory prediction (2023)
[12]
Li Y et al. V2x-sim: multi-agent collaborative perception dataset and benchmark for autonomous driving IEEE Robot. Autom. Lett. 2022 7 4 10914-10921
[13]
Li, Y., Ren, S., Wu, P., Chen, S., Feng, C., Zhang, W.: Learning distilled collaboration graph for multi-agent perception. In: Advances in Neural Information Processing Systems, vol. 34, pp. 29541–29552 (2021)
[14]
Liao Y, Xie J, and Geiger A Kitti-360: a novel dataset and benchmarks for urban scene understanding in 2D and 3D IEEE Trans. Pattern Anal. Mach. Intell. 2022 45 3 3292-3310
[15]
Lu, Y., Hu, Y., Zhong, Y., Wang, D., Chen, S., Wang, Y.: An extensible framework for open heterogeneous collaborative perception. arXiv preprint arXiv:2401.13964 (2024)
[16]
Lu, Y., et al.: Robust collaborative 3D object detection in presence of pose errors. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 4812–4818. IEEE (2023)
[17]
Rawashdeh, Z.Y., Wang, Z.: Collaborative automated driving: a machine learning-based method to enhance the accuracy of shared information. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3961–3966. IEEE (2018)
[18]
Su, S., et al.: Uncertainty quantification of collaborative detection for self-driving. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 5588–5594. IEEE (2023)
[19]
Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)
[20]
Team, O.D.: OpenPCDet: an open-source toolbox for 3D object detection from point clouds (2020). https://github.com/open-mmlab/OpenPCDet
[21]
Wang T-H, Manivasagam S, Liang M, Yang B, Zeng W, and Urtasun R Vedaldi A, Bischof H, Brox T, and Frahm J-M V2VNet: vehicle-to-vehicle communication for joint perception and prediction Computer Vision – ECCV 2020 2020 Cham Springer 605-621
[22]
Wei, S., et al.: Asynchrony-robust collaborative perception via bird’s eye view flow. In: Advances in Neural Information Processing Systems (2023)
[23]
Wu, Z., Wang, Y., Ma, H., Li, Z., Qiu, H., Li, J.: CMP: cooperative motion prediction with multi-agent communication. arXiv preprint arXiv:2403.17916 (2024)
[24]
Xia X et al. An automated driving systems data acquisition and analytics platform Transp. Res. Part C Emerg. Technol. 2023 151 104120
[25]
Xiang, H., Xu, R., Ma, J.: HM-ViT: hetero-modal vehicle-to-vehicle cooperative perception with vision transformer. arXiv preprint arXiv:2304.10628 (2023)
[26]
Xiang, H., Xu, R., Xia, X., Zheng, Z., Zhou, B., Ma, J.: V2XP-ASG: generating adversarial scenes for vehicle-to-everything perception. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 3584–3591. IEEE (2023)
[27]
Xu, C., et al.: PreTraM: self-supervised pre-training via connecting trajectory and map. arXiv preprint arXiv:2204.10435 (2022)
[28]
Xu, R., Chen, W., Xiang, H., Xia, X., Liu, L., Ma, J.: Model-agnostic multi-agent perception framework. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 1471–1478. IEEE (2023)
[29]
Xu, R., Guo, Y., Han, X., Xia, X., Xiang, H., Ma, J.: OpenCDA: an open cooperative driving automation framework integrated with co-simulation. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 1155–1162. IEEE (2021)
[30]
Xu, R., Tu, Z., Xiang, H., Shao, W., Zhou, B., Ma, J.: CoBEVT: cooperative bird’s eye view semantic segmentation with sparse transformers. arXiv preprint arXiv:2207.02202 (2022)
[31]
Xu, R., et al.: V2V4Real: a real-world large-scale dataset for vehicle-to-vehicle cooperative perception. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13712–13722 (2023)
[32]
Xu, R., et al.: The OpenCDA open-source ecosystem for cooperative driving automation research. IEEE Trans. Intell. Veh. (2023)
[33]
Xu R, Xiang H, Tu Z, Xia X, Yang MH, and Ma J Avidan S, Brostow G, Cissé M, Farinella GM, and Hassner T V2X-ViT: vehicle-to-everything cooperative perception with vision transformer Computer Vision – ECCV 2022 2022 Cham Springer 107-124
[34]
Xu, R., Xiang, H., Xia, X., Han, X., Li, J., Ma, J.: OPV2V: an open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 2583–2589. IEEE (2022)
[35]
Yu, H., et al.: DAIR-v2x: a large-scale dataset for vehicle-infrastructure cooperative 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21361–21370 (2022)
[36]
Zheng, Z., Han, X., Xia, X., Gao, L., Xiang, H., Ma, J.: OpenCDA-ROS: enabling seamless integration of simulation and real-world cooperative driving automation. IEEE Trans. Intell. Veh. (2023)
[37]
Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection, pp. 4490–4499 (2018)
[38]
Zhou, Z., Yang, Z., Zhang, Y., Huang, Y., Chen, H., Yu, Z.: A comprehensive study of speed prediction in transportation system: from vehicle to traffic. Iscience 25(3) (2022)

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
Computer Vision – ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part LII
Sep 2024
577 pages
ISBN:978-3-031-72942-3
DOI:10.1007/978-3-031-72943-0
  • Editors:
  • Aleš Leonardis,
  • Elisa Ricci,
  • Stefan Roth,
  • Olga Russakovsky,
  • Torsten Sattler,
  • Gül Varol

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 29 November 2024

Author Tags

  1. V2X Dataset
  2. Cooperative Perception
  3. Autonomous Driving

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media