Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-319-39955-3_10guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Examining the Neural Correlates of Incidental Facial Emotion Encoding Within the Prefrontal Cortex Using Functional Near-Infrared Spectroscopy

Published: 17 July 2016 Publication History

Abstract

Previous neuroimaging research has implicated the prefrontal cortex PFC as a region of the brain that is vital for various aspects of emotion processing. The present study sought to examine the neural correlates of incidental facial emotion encoding, with regard to neutral and fearful faces, within the PFC. Thirty-nine healthy adults were presented briefly with neutral and fearful faces and the evoked hemodynamic oxygenation within the PFC was measured using 16-channel continuous-wave functional near-infrared spectroscopy. When viewing fearful as compared to neutral faces, participants demonstrated higher levels of activation within the right medial PFC. On the other hand, participants demonstrated lower levels of activation within the left medial PFC and left lateral PFC when viewing fearful faces, as compared to neutral faces.These findings are consistent with previous fMRI research, and suggest that fearful faces are linked to a neural response within the right medial PFC, whereas neutral faces appear to elicit a neural response within left medial and lateral areas of the PFC.

References

[1]
Phan, K.L., Wager, T., Taylor, S.F., Liberzon, I.: Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 162, 331---348 2002
[2]
Narumoto, J., Yamada, H., Iidaka, T., Sadato, N., Fukui, K., Itoh, H., Yonekura, Y.: Brain regions involved in verbal or non-verbal aspects of facial emotion recognition. Neuroreport 1111, 2571---2574 2000
[3]
Doi, H., Nishitani, S., Shinohara, K.: NIRS as a tool for assaying emotional function in the prefrontal cortex. Front. Hum. Neurosci. 7, 770 2013.
[4]
Liberati, G., Federici, S., Pasqualotto, E.: Extracting neurophysiological signals reflecting users' emotional and affective responses to BCI use: a systematic literature review. NeuroRehabilitation 37, 341---358 2015.
[5]
Ochsner, K.N., Silvers, J.A., Buhle, J.T.: Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann. N. Y. Acad. Sci. 1251, E1---E24 2012.
[6]
Etkin, A., Egner, T., Kalisch, R.: Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 152, 85---93 2011.
[7]
Gorno-Tempini, M.L., Pradelli, S., Serafini, M., Pagnoni, G., Baraldi, P., Porro, C., Nichelli, P.: Explicit and incidental facial expression processing: an fMRI study. Neuroimage 142, 465---473 2001
[8]
Fusar-Poli, P., Placentino, A., Carletti, F., Landi, P., Abbamonte, M.: Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J. Psychiatry Neurosci. JPN 346, 418 2009
[9]
Wager, T.D., Barrett, L.F., Bliss-Moreau, E., Lindquist, K., Duncan, S., Kober, H., Mize, J.: The neuroimaging of emotion. Handb. Emot. 3, 249---271 2008
[10]
Wager, T.D., Davidson, M.L., Hughes, B.L., Lindquist, M.A., Ochsner, K.N.: Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 596, 1037---1050 2008
[11]
Kober, H., Barrett, L.F., Joseph, J., Bliss-Moreau, E., Lindquist, K., Wager, T.D.: Functional grouping and cortical---subcortical interactions in emotion: a meta-analysis of neuroimaging studies. Neuroimage 422, 998---1031 2008
[12]
Irani, F., Platek, S.M., Bunce, S., Ruocco, A.C., Chute, D.: Functional near infrared spectroscopy fNIRS: an emerging neuroimaging technology with important applications for the study of brain disorders. Clin. Neuropsychologist 211, 9---37 2007
[13]
Ayaz, H., Shewokis, P.A., Bunce, S., Izzetoglu, K., Willems, B., Onaral, B.: Optical brain monitoring for operator training and mental workload assessment. Neuroimage 591, 36---47 2012.
[14]
Ayaz, H., Shewokis, P.A., Curtin, A., Izzetoglu, M., Izzetoglu, K., Onaral, B.: Using MazeSuite and functional near infrared spectroscopy to study learning in spa-tial navigation. J. Vis. Exp. 56, e3443 2014.
[15]
Rodrigo, A.H., Di Domenico, S.I., Ayaz, H., Gulrajani, S., Lam, J., Ruocco, A.C.: Differentiating functions of the lateral and medial prefrontal cortex in motor response inhibition. Neuroimage 85, 423---431 2014
[16]
Ruocco, A.C., Rodrigo, A.H., Lam, J., Di Domenico, S.I., Graves, B., Ayaz, H.: A problem-solving task specialized for functional neuroimaging: validation of the Scarborough adaptation of the Tower of London S-TOL using near-infrared spectroscopy. Front. Hum. Neurosci. 8, 185 2013
[17]
Di Domenico, S.I., Rodrigo, A.H., Ayaz, H., Fournier, M.A., Ruocco, A.C.: Decision-making conflict and the neural efficiency hypothesis of intelligence: a functional near-infrared spectroscopy investigation. NeuroImage 109, 307---317 2015
[18]
Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P.A., McKendrick, R., Parasuraman, R.: Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: Empirical examples and a technological development. Front. Hum. Neurosci. 7, 1---13 2013.
[19]
Balconi, M., Molteni, E.: Past and future of near-infrared spectroscopy in studies of emotion and social neuroscience. J. Cogn. Psychol. 28, 1---18 2015.
[20]
Balters, S., Steinert, M.: Capturing emotion reactivity through physiology measurement as a foundation for affective engineering in engineering design science and engineering practices. J. Intell. Manuf. 28, 1---18 2015.
[21]
Heller, A.S., Johnstone, T., Peterson, M.J., Kolden, G.G., Kalin, N.H., Davidson, R.J.: Increased prefrontal cortex activity during negative emotion regulation as a predictor of depression symptom severity trajectory over 6 months. JAMA Psychiatry 7011, 1181---1189 2013.
[22]
Ozawa, S., Matsuda, G., Hiraki, K.: Negative emotion modulates prefrontal cortex activity during a working memory task: A NIRS study. Front. Hum. Neurosci. 8, 46 2014.
[23]
Sun, Y., Ayaz, H., Akansu, A.N.: Neural correlates of affective context in facial expression analysis: a simultaneous EEG-fNIRS study. In: Paper Presented at the 3rd IEEE GlobalSIP Conference, Symposium on Signal Processing Challenges in Human Brain Connectomics, Orlando, FL 2015
[24]
Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., Taylor, J.G.: Emotion recognition in human-computer interaction. IEEE Signal Process. Mag. 181, 32---80 2001
[25]
Parasuraman, R., Christensen, J., Grafton, S.: Neuroergonomics: the brain in action and at work. Neuroimage 591, 1---3 2012
[26]
Parasuraman, R., Rizzo, M.: Neuroergonomics: The Brain at Work. Oxford University Press, New York 2007
[27]
Zander, T.O., Kothe, C., Jatzev, S., Gaertner, M.: Enhancing human-computer interaction with input from active and passive brain-computer interfaces. In: Tan, D.S., Nijholt, A. eds. Brain-Computer Interfaces, pp. 181---199. Springer, London 2010
[28]
Gur, R.C., Ragland, J.D., Moberg, P.J., Turner, T.H., Bilker, W.B., Kohler, C., Siegel, S.J., Gur, R.E.: Computerized neurocognitive scanning: I. Methodology and validation in healthy people. Neuropsychopharmacology 255, 766---776 2001
[29]
Ayaz, H., Izzetoglu, M., Platek, S.M., Bunce, S., Izzetoglu, K., Pourrezaei, K., Onaral, B.: Registering fNIR data to brain surface image using MRI templates. In: Conference Proceedings of the IEEE Engineering in Medicine and Biology Society, pp. 2671---2674 2006.
[30]
Jasper, H.H.: Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr. Clin. Neurophysiol. 10, 370---375 1958
[31]
Ayaz, H.: Functional near infrared spectroscopy based brain computer interface. Ph.D. thesis, Drexel University, Philadelphia, PA 2010
[32]
Bryk, A.S., Raudenbush, S.W.: Application of hierarchical linear models to assessing change. Psychol. Bull. 1011, 147 1987
[33]
Schluchter, M.D., Elashoff, J.T.: Small-sample adjustments to tests with unbalanced repeated measures assuming several covariance structures. J. Stat. Comput. Simul. 371---2, 69---87 1990
[34]
Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., Golani, I.: Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 1251, 279---284 2001
[35]
Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B Methodol. 57, 289---300 1995
[36]
Kilts, C.D., Egan, G., Gideon, D.A., Ely, T.D., Hoffman, J.M.: Dissociable neural pathways are involved in the recognition of emotion in static and dynamic facial expressions. Neuroimage 181, 156---168 2003
  1. Examining the Neural Correlates of Incidental Facial Emotion Encoding Within the Prefrontal Cortex Using Functional Near-Infrared Spectroscopy

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    Proceedings, Part I, 10th International Conference on Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience - Volume 9743
    July 2016
    442 pages
    ISBN:9783319399546

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 17 July 2016

    Author Tags

    1. Facial emotions
    2. Incidental encoding
    3. Prefrontal cortex
    4. fNIRS

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 30 Jan 2025

    Other Metrics

    Citations

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media