Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-319-48743-4_22guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

A Block-Based Edge Partitioning for Random Walks Algorithms over Large Social Graphs

Published: 07 November 2016 Publication History

Abstract

Recent resultsï ź[5, 9, 23] prove that edge partitioning approaches also known as vertex-cut outperform vertex partitioningedge-cut approaches for computations on large and skewed graphs like social networks. These vertex-cut approaches generally avoid unbalanced computation due to the power-law degree distribution problem. However, these methods, like evenly random assigningï ź[23] or greedy assignment strategyï ź[9], are generic and do not consider any computation pattern for specific graph algorithm. We propose in this paper a vertex-cut partitioning dedicated to random walks algorithms which takes advantage of graph topological properties. It relies on a blocks approach which captures local communities. Our split and merge algorithms allow to achieve load balancing of the workers and to maintain it dynamically. Our experiments illustrate the benefit of our partitioning since it significantly reduce the communication cost when performing random walks-based algorithms compared with existing approaches.

References

[1]
Andersen, R., Chung, F., Lang, K.: Local graph partitioning using PageRank vectors. In: FOCS, pp. 475---486 2006
[2]
Apache. Giraph. http://giraph.apache.org
[3]
Bahmani, B., Chakrabarti, K., Xin, D.: Fast personalized PageRank on MapReduce. In: SIGMOD, pp. 973---984 2011
[4]
Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and personalized PageRank. Proc. VLDB Endow. 43, 173---184 2010
[5]
Bourse, F., Lelarge, M., Vojnovic, M.: Balanced graph edge partition. In: SIGKDD, pp. 1456---1465 2014
[6]
Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi, A., Raghavan, P.: On compressing social networks. In: SIGKDD, pp. 219---228 2009
[7]
Dahimene, R., Constantin, C., du Mouza, C.: RecLand: a recommender system for social networks. In: CIKM, pp. 2063---2065 2014
[8]
Gleich, D.F., Seshadhri, C.: Vertex neighborhoods, low conductance cuts, and good seeds for local community methods. In: SIGKDD, pp. 597---605 2012
[9]
Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: distributed graph-parallel computation on natural graphs. In: OSDI, pp. 17---30 2012
[10]
Jeh, G., Widom, J.: Scaling personalized web search. In: WWW, pp. 271---279 2003
[11]
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 201, 359---392 1998
[12]
Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Techn. J. 492, 291---307 1970
[13]
Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6, 29---123 2008
[14]
Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.: Distributed GraphLab: a framework for machine learning and data mining in the cloud. VLDB Endow. 58, 716---727 2012
[15]
Lubos Takac, M.Z.: Data analysis in public social networks. In: Present Day Trends of Innovations, pp. 1---6 2012
[16]
Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD, pp. 135---146 2010
[17]
Newman, M., Barabasi, A.-L., Watts, D.J., Structure, T.: Dynamics of Networks: Princeton Studies in Complexity. Princeton University Press, Princeton 2006
[18]
Roy, A., Bindschaedler, L., Malicevic, J., Zwaenepoel, W.: Chaos: scale-out graph processing from secondary storage. In: SOSP, pp. 410---424 2015
[19]
Salihoglu, S., Widom, J.: GPS: a graph processing system. In: SSDBM, pp. 22:1---22:12 2013
[20]
Sarkar, P., Moore, A.W.: Fast nearest-neighbor search in disk-resident graphs. In: SIGKDD, pp. 513---522 2010
[21]
Valiant, L.G.: A bridging model for multi-core computing. J. Comput. Syst. Sci. 771, 154---166 2011
[22]
Whang, J.J., Gleich, D.F., Dhillon, I.S.: Overlapping community detection using seed set expansion. In: CIKM, pp. 2099---2108 2013
[23]
Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX: a resilient distributed graph system on spark. In: GRADES, pp. 1---6 2013
[24]
Yang, S., Yan, X., Zong, B., Khan, A.: Towards effective partition management for large graphs. In: SIGMOD, pp. 517---528 2012
[25]
Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: NSDI, p. 2 2012

Cited By

View all
  • (2020)A Graph Partitioning Algorithm for Edge or Vertex BalanceDatabase and Expert Systems Applications10.1007/978-3-030-59003-1_2(23-37)Online publication date: 14-Sep-2020
  • (2017)SGVCutProceedings of the 29th International Conference on Scientific and Statistical Database Management10.1145/3085504.3091114(1-4)Online publication date: 27-Jun-2017

Index Terms

  1. A Block-Based Edge Partitioning for Random Walks Algorithms over Large Social Graphs

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    WISE 2016: Proceedings of the 17th International Conference on Web Information Systems Engineering - Volume 10042
    November 2016
    427 pages
    ISBN:9783319487427

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 07 November 2016

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 09 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2020)A Graph Partitioning Algorithm for Edge or Vertex BalanceDatabase and Expert Systems Applications10.1007/978-3-030-59003-1_2(23-37)Online publication date: 14-Sep-2020
    • (2017)SGVCutProceedings of the 29th International Conference on Scientific and Statistical Database Management10.1145/3085504.3091114(1-4)Online publication date: 27-Jun-2017

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media