Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-319-54157-0_43guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Surrogate-Assisted Partial Order-Based Evolutionary Optimisation

Published: 19 March 2017 Publication History

Abstract

In this paper, we propose a novel approach SAPEO to support the survival selection process in evolutionary multi-objective algorithms with surrogate models. The approach dynamically chooses individuals to evaluate exactly based on the model uncertainty and the distinctness of the population. We introduce multiple SAPEO variants that differ in terms of the uncertainty they allow for survival selection and evaluate their anytime performance on the BBOB bi-objective benchmark. In this paper, we use a Kriging model in conjunction with an SMS-EMOA for SAPEO. We compare the obtained results with the performance of the regular SMS-EMOA, as well as another surrogate-assisted approach. The results open up general questions about the applicability and required conditions for surrogate-assisted evolutionary multi-objective algorithms to be tackled in the future.

References

[1]
Arnold, D., Beyer, H.-G.: On the benefits of populations for noisy optimization. Evol. Comput. 112, 111---127 2003
[2]
Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 1813, 1653---1669 2007
[3]
Brockhoff, D., Tušar, T., Tušar, D., Wagner, T., Hansen, N., Auger, A.: Biobjective performance assessment with the COCO platform. CoRR abs/1605.01746 2016. Accessed 22 Dec 2016
[4]
Emmerich, M., Giannakoglou, K., Naujoks, B.: Single- and multi-objective evolutionary optimization assisted by Gaussian random field metamodels. IEEE Trans. Evol. Comput. 104, 421---439 2006
[5]
Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. In: Companion of Genetic and Evolutionary Computation Conference GECCO 2010, pp. 1689---1696. ACM Press, New York 2010
[6]
Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Research report RR-6829, INRIA 2009. Accessed 22 Dec 2016
[7]
Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Softw. Comput. 91, 3---12 2005
[8]
Jin, Y.: Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol. Comput. 12, 61---70 2011
[9]
Knowles, J., Nakayama, H.: Meta-modeling in multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. eds. Multiobjective Optimization. LNCS, vol. 5252, pp. 245---284. Springer, Heidelberg 2008.
[10]
Limbourg, P., Aponte, D.E.S.: An optimization algorithm for imprecise multi-objective problem functions. In: IEEE Congress on Evolutionary Computation CEC 2005. IEEE Press, Piscataway 2005
[11]
Mlakar, M., Petelin, D., Tušar, T., Filipiă, B.: GP-DEMO: differential evolution for multiobjective optimization based on Gaussian process models. Eur. J. Oper. Res. 2432, 347---361 2015
[12]
Nissen, V., Propach, J.: Optimization with noisy function evaluations. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. eds. PPSN 1998. LNCS, vol. 1498, pp. 159---168. Springer, Heidelberg 1998.
[13]
Rudolph, G.: A partial order approach to noisy fitness functions. In: IEEE Congress on Evolutionary Computation CEC 2001, pp. 318---325. IEEE Press, Piscataway 2001
[14]
Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 44, 409---423 1989
[15]
Tušar, T., Brockhoff, D., Hansen, N., Auger, A.: COCO: the bi-objective black box optimization benchmarking BBOB-BIOBJ test suite. CoRR abs/1604.00359 2016. Accessed 22 Dec 2016
[16]
Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of pareto set approximations. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. eds. Multiobjective Optimization. LNCS, vol. 5252, pp. 373---404. Springer, Heidelberg 2008.

Cited By

View all
  • (2020)Hybrid bayesian evolutionary optimization for hyperparameter tuningProceedings of the 2020 Genetic and Evolutionary Computation Conference Companion10.1145/3377929.3389952(225-226)Online publication date: 8-Jul-2020
  • (2019)On benchmarking surrogate-assisted evolutionary algorithmsProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3319619.3326866(1603-1605)Online publication date: 13-Jul-2019
  • (2019)Pareto Optimal Set Approximation by Models: A Linear CaseEvolutionary Multi-Criterion Optimization10.1007/978-3-030-12598-1_36(451-462)Online publication date: 10-Mar-2019
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
EMO 2017: 9th International Conference on Evolutionary Multi-Criterion Optimization - Volume 10173
March 2017
700 pages
ISBN:9783319541563

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 19 March 2017

Author Tags

  1. BBOB
  2. Evolutionary algorithms
  3. Multi-objective
  4. Partial order
  5. Surrogates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2020)Hybrid bayesian evolutionary optimization for hyperparameter tuningProceedings of the 2020 Genetic and Evolutionary Computation Conference Companion10.1145/3377929.3389952(225-226)Online publication date: 8-Jul-2020
  • (2019)On benchmarking surrogate-assisted evolutionary algorithmsProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3319619.3326866(1603-1605)Online publication date: 13-Jul-2019
  • (2019)Pareto Optimal Set Approximation by Models: A Linear CaseEvolutionary Multi-Criterion Optimization10.1007/978-3-030-12598-1_36(451-462)Online publication date: 10-Mar-2019
  • (2017)Investigating uncertainty propagation in surrogate-assisted evolutionary algorithmsProceedings of the Genetic and Evolutionary Computation Conference10.1145/3071178.3071249(881-888)Online publication date: 1-Jul-2017

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media