Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-319-58068-5_21guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Combining Word and Entity Embeddings for Entity Linking

Published: 28 May 2017 Publication History

Abstract

The correct identification of the link between an entity mention in a text and a known entity in a large knowledge base is important in information retrieval or information extraction. The general approach for this task is to generate, for a given mention, a set of candidate entities from the base and, in a second step, determine which is the best one. This paper proposes a novel method for the second step which is based on the joint learning of embeddings for the words in the text and the entities in the knowledge base. By learning these embeddings in the same space we arrive at a more conceptually grounded model that can be used for candidate selection based on the surrounding context. The relative improvement of this approach is experimentally validated on a recent benchmark corpus from the TAC-EDL 2015 evaluation campaign.

References

[1]
Baroni, M., Dinu, G., Kruszewski, G.: Don’t count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In: Proceedings of the 52nd Annual Meeting of the ACL, pp. 238–247, June 2014
[2]
Bordes A, Usunier N, Garcia-Duran A, Weston J, and Yakhnenko O Translating embeddings for modeling multi-relational data Adv. Neural Inf. Process. Syst. 2013 26 2787-2795
[3]
Burkhard WA and Keller RM Some approaches to best-match file searching Commun. ACM 1973 16 4 230-236
[4]
Cao, Z., Tao, Q., Tie-Yan, L., Ming-Feng, T., Hang, L.: Learning to rank: from pairwise approach to listwise approach. In: 24th International Conference on Machine Learning (ICML 2007), Corvalis, Oregon, USA, pp. 129–136 (2007)
[5]
Cassidy, T., Chen, Z., Artiles, J., Ji, H., Deng, H., Ratinov, L.A., Zheng, J., Han, J., Roth, D.: CUNY-UIUC-SRI TAC-KBP2011 entity linking system description. In: Text Analysis Conference (TAC 2011) (2011)
[6]
Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. In: 2007 Joint Conference on EMNLP-CoNLL, pp. 708–716 (2007)
[7]
Dredze, M., McNamee, P., Rao, D., Gerber, A., Finin, T.: Entity disambiguation for knowledge base population. In: 23rd International Conference on Computational Linguistics (COLING 2010), Beijing, China, pp. 277–285 (2010)
[8]
Fang, W., Zhang, J., Wang, D., Chen, Z., Li, M.: Entity disambiguation by knowledge and text jointly embedding. In: CoNLL 2016, p. 260 (2016)
[9]
Han, X., Zhao, J.: NLPR_KBP in TAC 2009 KBP track: a two-stage method to entity linking. In: Text Analysis Conference (TAC 2009) (2009)
[10]
Hoffart J, Suchanek F, Berberich K, and Weikum G YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia Artif. Intell. 2013 194 28-61
[11]
Ji, H., Nothman, J., Hachey, B.: Overview of TAC-KBP2014 entity discovery and linking tasks. In: Text Analysis Conference (TAC 2014) (2014)
[12]
Ji, H., Nothman, J., Hachey, B., Florian, R.: Overview of TAC-KBP2015 tri-lingual entity discovery and linking. In: Text Analysis Conference (TAC 2015) (2015)
[13]
Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31st ICML, pp. 1188–1196 (2014)
[14]
Lehmann, J., Monahan, S., Nezda, L., Jung, A., Shi, Y.: LCC approaches to knowledge base population at TAC 2010. In: Text Analysis Conference (2010)
[15]
Levy O, Goldberg Y, and Dagan I Improving distributional similarity with lessons learned from word embeddings Trans. Assoc. Comput. Linguist. 2015 3 211-225
[16]
Ling X, Singh S, and Weld D Design challenges for entity linking Trans. Assoc. Comput. Linguist. (TACL) 2015 3 315-328
[17]
Mihalcea, R., Csomai, A.: Wikify! linking documents to encyclopedic knowledge. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, pp. 233–242. ACM, Lisbon (2007)
[18]
Mikolov T, Sutskever I, Chen K, Corrado GS, and Dean J Distributed representations of words and phrases and their compositionality Adv. Neural Inf. Process. Syst. 2013 26 3111-3119
[19]
Miller GA WordNet: a lexical database for English Commun. ACM 1995 38 11 39-41
[20]
Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th IJCNLP, ACL 2009, pp. 1003–1011 (2009)
[21]
Moro A, Raganato A, and Navigli R Entity linking meets word sense disambiguation: a unified approach Trans. Assoc. Comput. Linguist. (TACL) 2014 2 231-244
[22]
Navigli R and Ponzetto SP BabelNet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network Artif. Intell. 2012 193 217-250
[23]
Pappu, A., Blanco, R., Mehdad, Y., Stent, A., Thadani, K.: Lightweight multilingual entity extraction and linking. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, pp. 365–374. ACM (2017)
[24]
Shen, W., Jianyong, W., Ping, L., Min, W.: LINDEN: linking named entities with knowledge base via semantic knowledge. In: Proceedings of the 21st International Conference on World Wide Web (WWW 2012), Lyon, France, pp. 449–458 (2012)
[25]
Shen W, Wang J, and Han J Entity linking with a knowledge base: issues, techniques, and solutions Trans. Knowl. Data Eng. 2015 27 443-460
[26]
Varma, V., Bharath, V., Kovelamudi, S., Bysani, P., Santosh, G.S.K., Kiran Kumar, N., Reddy, K., Kumar, K., Maganti, N.: IIT Hyderabad at TAC 2009. In: Text Analysis Conference (TAC 2009) (2009)
[27]
Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph and text jointly embedding. In: The 2014 Conference on Empirical Methods on Natural Language Processing. ACL - Association for Computational Linguistics, October 2014
[28]
Yamada, I., Shindo, H., Takeda, H., Takefuji, Y.: Joint learning of the embedding of words and entities for named entity disambiguation. In: Proceedings of the 20th SIGNLL CoNLL, pp. 250–259 (2016)
[29]
Zwicklbauer S, Seifert C, and Granitzer M Sack H, Blomqvist E, d’Aquin M, Ghidini C, Ponzetto SP, and Lange C DoSeR - a knowledge-base-agnostic framework for entity disambiguation using semantic embeddings The Semantic Web. Latest Advances and New Domains 2016 Cham Springer 182-198
[30]
Zwicklbauer, S., Seifert, C., Granitzer, M.: Robust and collective entity disambiguation through semantic embeddings. In: 39th International ACM Conference on Research and Development in Information Retrieval (SIGIR), pp. 425–434 (2016)

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
The Semantic Web: 14th International Conference, ESWC 2017, Portorož, Slovenia, May 28 – June 1, 2017, Proceedings, Part I
May 2017
687 pages
ISBN:978-3-319-58067-8
DOI:10.1007/978-3-319-58068-5

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 28 May 2017

Author Tags

  1. Entity Linking
  2. Linked data
  3. Natural language processing and information retrieval

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)AugSBertChat: User Feedback-Enhanced QA with Sentence-RoBERTaAdvanced Intelligent Computing Technology and Applications10.1007/978-981-97-5669-8_17(202-213)Online publication date: 5-Aug-2024
  • (2021)KG-ZESHEL: Knowledge Graph-Enhanced Zero-Shot Entity LinkingProceedings of the 11th Knowledge Capture Conference10.1145/3460210.3493549(49-56)Online publication date: 2-Dec-2021
  • (2019)Word Embeddings for Entity-Annotated TextsAdvances in Information Retrieval10.1007/978-3-030-15712-8_20(307-322)Online publication date: 14-Apr-2019
  • (2018)A Tri-Partite Neural Document Language Model for Semantic Information RetrievalThe Semantic Web10.1007/978-3-319-93417-4_29(445-461)Online publication date: 3-Jun-2018

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media