Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1007/978-3-319-66179-7_31guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Zoom-in-Net: Deep Mining Lesions for Diabetic Retinopathy Detection

Published: 10 September 2017 Publication History

Abstract

We propose a convolution neural network based algorithm for simultaneously diagnosing diabetic retinopathy and highlighting suspicious regions. Our contributions are two folds: (1) a network termed Zoom-in-Net which mimics the zoom-in process of a clinician to examine the retinal images. Trained with only image-level supervisions, Zoom-in-Net can generate attention maps which highlight suspicious regions, and predicts the disease level accurately based on both the whole image and its high resolution suspicious patches. (2) Only four bounding boxes generated from the automatically learned attention maps are enough to cover 80% of the lesions labeled by an experienced ophthalmologist, which shows good localization ability of the attention maps. By clustering features at high response locations on the attention maps, we discover meaningful clusters which contain potential lesions in diabetic retinopathy. Experiments show that our algorithm outperform the state-of-the-art methods on two datasets, EyePACS and Messidor.

References

[2]
Abràmoff MD, Reinhardt JM, Russell SR, Folk JC, Mahajan VB, Niemeijer M, and Quellec G Automated early detection of diabetic retinopathy Ophthalmology 2010 117 6 1147-1154
[3]
Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, and Niemeijer M Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning deep learning detection of diabetic retinopathy IOVS 2016 57 13 5200-5206
[4]
Chandrakumar, T., Kathirvel, R.: Classifying diabetic retinopathy using deep learning architecture. In: IJERT (2016)
[5]
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM TIST (2011). http://www.csie.ntu.edu.tw/~cjlin/libsvm
[6]
Chaum, E., Karnowski, T.P., Govindasamy, V.P., Abdelrahman, M., Tobin, K.W.: Retina (2008)
[7]
Decencière E, Zhang X, Cazuguel G, Laÿ B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, et al. Feedback on a publicly distributed image database: the messidor database Image Anal. Stereology 2014 33 3 231-234
[8]
Frey BJ and Dueck D Clustering by passing messages between data points Science 2007 315 5814 972-976
[9]
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs JAMA 2016 316 22 2402-2410
[10]
Jamaludin A, Kadir T, and Zisserman A Ourselin S, Joskowicz L, Sabuncu MR, Unal G, and Wells W SpineNet: automatically pinpointing classification evidence in spinal MRIs Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016 2016 Cham Springer 166-175
[11]
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: ACM (2014)
[12]
Pires R, Avila S, Jelinek H, Wainer J, Valle E, and Rocha A Beyond lesion-based diabetic retinopathy: a direct approach for referral JBHI 2015 21 1 193-200
[13]
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al. ImageNet large scale visual recognition challenge IJCV 2015 115 3 211-252
[14]
Sànchez CI, Niemeijer M, Dumitrescu AV, Suttorp-Schulten MS, Abràmoff MD, and Van GB Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data IOVS 2011 52 7 4866-4871
[15]
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261 (2016)
[16]
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)
[17]
Tang L, Niemeijer M, Reinhardt JM, Garvin MK, and Abràmoff MD Splat feature classification with application to retinal hemorrhage detection in fundus images TMI 2013 32 2 364-375
[18]
Vo, H.H., Verma, A.: New deep neural nets for fine-grained diabetic retinopathy recognition on hybrid color space. In: ISM. IEEE (2016)

Cited By

View all
  • (2024)Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy gradingComputer Methods and Programs in Biomedicine10.1016/j.cmpb.2024.108160249:COnline publication date: 9-Jul-2024
  • (2024)CTNet: convolutional transformer network for diabetic retinopathy classificationNeural Computing and Applications10.1007/s00521-023-09304-336:9(4787-4809)Online publication date: 1-Mar-2024
  • (2023)Optimized quaternion radial Hahn Moments application to deep learning for the classification of diabetic retinopathyMultimedia Tools and Applications10.1007/s11042-023-15582-982:30(46217-46240)Online publication date: 1-Dec-2023
  • Show More Cited By

Index Terms

  1. Zoom-in-Net: Deep Mining Lesions for Diabetic Retinopathy Detection
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    Medical Image Computing and Computer Assisted Intervention − MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III
    Sep 2017
    696 pages
    ISBN:978-3-319-66178-0
    DOI:10.1007/978-3-319-66179-7

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 10 September 2017

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy gradingComputer Methods and Programs in Biomedicine10.1016/j.cmpb.2024.108160249:COnline publication date: 9-Jul-2024
    • (2024)CTNet: convolutional transformer network for diabetic retinopathy classificationNeural Computing and Applications10.1007/s00521-023-09304-336:9(4787-4809)Online publication date: 1-Mar-2024
    • (2023)Optimized quaternion radial Hahn Moments application to deep learning for the classification of diabetic retinopathyMultimedia Tools and Applications10.1007/s11042-023-15582-982:30(46217-46240)Online publication date: 1-Dec-2023
    • (2023)Prediction of Spherical Equivalent with Vanilla ResNetMyopic Maculopathy Analysis10.1007/978-3-031-54857-4_6(66-74)Online publication date: 8-Oct-2023
    • (2023)Beyond MobileNet: An Improved MobileNet for Retinal DiseasesMyopic Maculopathy Analysis10.1007/978-3-031-54857-4_5(56-65)Online publication date: 8-Oct-2023
    • (2023)Lesion-Aware Contrastive Learning for Diabetic Retinopathy DiagnosisMedical Image Computing and Computer Assisted Intervention – MICCAI 202310.1007/978-3-031-43990-2_63(671-681)Online publication date: 8-Oct-2023
    • (2022)Bag of Tricks for Diabetic Retinopathy Grading of Ultra-Wide Optical Coherence Tomography Angiography ImagesMitosis Domain Generalization and Diabetic Retinopathy Analysis10.1007/978-3-031-33658-4_3(26-30)Online publication date: 18-Sep-2022
    • (2022)A Transfer Learning Based Model Ensemble Method for Image Quality Assessment and Diabetic Retinopathy GradingMitosis Domain Generalization and Diabetic Retinopathy Analysis10.1007/978-3-031-33658-4_17(178-185)Online publication date: 18-Sep-2022
    • (2022)Learning Robust Representation for Joint Grading of Ophthalmic Diseases via Adaptive Curriculum and Feature DisentanglementMedical Image Computing and Computer Assisted Intervention – MICCAI 202210.1007/978-3-031-16437-8_50(523-533)Online publication date: 18-Sep-2022
    • (2019)High-Resolution Diabetic Retinopathy Image Synthesis Manipulated by Grading and LesionsMedical Image Computing and Computer Assisted Intervention – MICCAI 201910.1007/978-3-030-32239-7_56(505-513)Online publication date: 13-Oct-2019
    • Show More Cited By

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media